Solve for z
z=-\frac{\sqrt{15}i}{3}\approx -0-1.290994449i
z=\frac{\sqrt{15}i}{3}\approx 1.290994449i
Share
Copied to clipboard
3z^{2}=-5
Subtract 5 from both sides. Anything subtracted from zero gives its negation.
z^{2}=-\frac{5}{3}
Divide both sides by 3.
z=\frac{\sqrt{15}i}{3} z=-\frac{\sqrt{15}i}{3}
The equation is now solved.
3z^{2}+5=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
z=\frac{0±\sqrt{0^{2}-4\times 3\times 5}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 0 for b, and 5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
z=\frac{0±\sqrt{-4\times 3\times 5}}{2\times 3}
Square 0.
z=\frac{0±\sqrt{-12\times 5}}{2\times 3}
Multiply -4 times 3.
z=\frac{0±\sqrt{-60}}{2\times 3}
Multiply -12 times 5.
z=\frac{0±2\sqrt{15}i}{2\times 3}
Take the square root of -60.
z=\frac{0±2\sqrt{15}i}{6}
Multiply 2 times 3.
z=\frac{\sqrt{15}i}{3}
Now solve the equation z=\frac{0±2\sqrt{15}i}{6} when ± is plus.
z=-\frac{\sqrt{15}i}{3}
Now solve the equation z=\frac{0±2\sqrt{15}i}{6} when ± is minus.
z=\frac{\sqrt{15}i}{3} z=-\frac{\sqrt{15}i}{3}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}