Solve for y
y=\frac{15-3\sqrt{33}}{2}\approx -1.11684397
Graph
Share
Copied to clipboard
3y-2-\left(1-6\sqrt{y+3}\right)=y+3
Subtract 1-6\sqrt{y+3} from both sides.
3y-2-\left(1-6\sqrt{y+3}\right)-y=3
Subtract y from both sides.
3y-2-1-\left(-6\sqrt{y+3}\right)-y=3
To find the opposite of 1-6\sqrt{y+3}, find the opposite of each term.
3y-2-1+6\sqrt{y+3}-y=3
The opposite of -6\sqrt{y+3} is 6\sqrt{y+3}.
3y-3+6\sqrt{y+3}-y=3
Subtract 1 from -2 to get -3.
2y-3+6\sqrt{y+3}=3
Combine 3y and -y to get 2y.
2y+6\sqrt{y+3}=3+3
Add 3 to both sides.
2y+6\sqrt{y+3}=6
Add 3 and 3 to get 6.
6\sqrt{y+3}=6-2y
Subtract 2y from both sides of the equation.
\left(6\sqrt{y+3}\right)^{2}=\left(6-2y\right)^{2}
Square both sides of the equation.
6^{2}\left(\sqrt{y+3}\right)^{2}=\left(6-2y\right)^{2}
Expand \left(6\sqrt{y+3}\right)^{2}.
36\left(\sqrt{y+3}\right)^{2}=\left(6-2y\right)^{2}
Calculate 6 to the power of 2 and get 36.
36\left(y+3\right)=\left(6-2y\right)^{2}
Calculate \sqrt{y+3} to the power of 2 and get y+3.
36y+108=\left(6-2y\right)^{2}
Use the distributive property to multiply 36 by y+3.
36y+108=36-24y+4y^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(6-2y\right)^{2}.
36y+108+24y=36+4y^{2}
Add 24y to both sides.
60y+108=36+4y^{2}
Combine 36y and 24y to get 60y.
60y+108-4y^{2}=36
Subtract 4y^{2} from both sides.
-4y^{2}+60y+108=36
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-4y^{2}+60y+108-36=36-36
Subtract 36 from both sides of the equation.
-4y^{2}+60y+108-36=0
Subtracting 36 from itself leaves 0.
-4y^{2}+60y+72=0
Subtract 36 from 108.
y=\frac{-60±\sqrt{60^{2}-4\left(-4\right)\times 72}}{2\left(-4\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -4 for a, 60 for b, and 72 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-60±\sqrt{3600-4\left(-4\right)\times 72}}{2\left(-4\right)}
Square 60.
y=\frac{-60±\sqrt{3600+16\times 72}}{2\left(-4\right)}
Multiply -4 times -4.
y=\frac{-60±\sqrt{3600+1152}}{2\left(-4\right)}
Multiply 16 times 72.
y=\frac{-60±\sqrt{4752}}{2\left(-4\right)}
Add 3600 to 1152.
y=\frac{-60±12\sqrt{33}}{2\left(-4\right)}
Take the square root of 4752.
y=\frac{-60±12\sqrt{33}}{-8}
Multiply 2 times -4.
y=\frac{12\sqrt{33}-60}{-8}
Now solve the equation y=\frac{-60±12\sqrt{33}}{-8} when ± is plus. Add -60 to 12\sqrt{33}.
y=\frac{15-3\sqrt{33}}{2}
Divide -60+12\sqrt{33} by -8.
y=\frac{-12\sqrt{33}-60}{-8}
Now solve the equation y=\frac{-60±12\sqrt{33}}{-8} when ± is minus. Subtract 12\sqrt{33} from -60.
y=\frac{3\sqrt{33}+15}{2}
Divide -60-12\sqrt{33} by -8.
y=\frac{15-3\sqrt{33}}{2} y=\frac{3\sqrt{33}+15}{2}
The equation is now solved.
3\times \frac{15-3\sqrt{33}}{2}-2=1-6\sqrt{\frac{15-3\sqrt{33}}{2}+3}+\frac{15-3\sqrt{33}}{2}+3
Substitute \frac{15-3\sqrt{33}}{2} for y in the equation 3y-2=1-6\sqrt{y+3}+y+3.
\frac{41}{2}-\frac{9}{2}\times 33^{\frac{1}{2}}=\frac{41}{2}-\frac{9}{2}\times 33^{\frac{1}{2}}
Simplify. The value y=\frac{15-3\sqrt{33}}{2} satisfies the equation.
3\times \frac{3\sqrt{33}+15}{2}-2=1-6\sqrt{\frac{3\sqrt{33}+15}{2}+3}+\frac{3\sqrt{33}+15}{2}+3
Substitute \frac{3\sqrt{33}+15}{2} for y in the equation 3y-2=1-6\sqrt{y+3}+y+3.
\frac{9}{2}\times 33^{\frac{1}{2}}+\frac{41}{2}=\frac{5}{2}-\frac{3}{2}\times 33^{\frac{1}{2}}
Simplify. The value y=\frac{3\sqrt{33}+15}{2} does not satisfy the equation because the left and the right hand side have opposite signs.
y=\frac{15-3\sqrt{33}}{2}
Equation 6\sqrt{y+3}=6-2y has a unique solution.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}