Solve for y
y=\frac{1}{3-2z}
z\neq \frac{3}{2}
Solve for z
z=\frac{3}{2}-\frac{1}{2y}
y\neq 0
Share
Copied to clipboard
3y-1-2yz=0
Subtract 2yz from both sides.
3y-2yz=1
Add 1 to both sides. Anything plus zero gives itself.
\left(3-2z\right)y=1
Combine all terms containing y.
\frac{\left(3-2z\right)y}{3-2z}=\frac{1}{3-2z}
Divide both sides by 3-2z.
y=\frac{1}{3-2z}
Dividing by 3-2z undoes the multiplication by 3-2z.
2yz=3y-1
Swap sides so that all variable terms are on the left hand side.
\frac{2yz}{2y}=\frac{3y-1}{2y}
Divide both sides by 2y.
z=\frac{3y-1}{2y}
Dividing by 2y undoes the multiplication by 2y.
z=\frac{3}{2}-\frac{1}{2y}
Divide 3y-1 by 2y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}