Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3y^{2}-6y=4y-8
Use the distributive property to multiply 3y by y-2.
3y^{2}-6y-4y=-8
Subtract 4y from both sides.
3y^{2}-10y=-8
Combine -6y and -4y to get -10y.
3y^{2}-10y+8=0
Add 8 to both sides.
y=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 3\times 8}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -10 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-10\right)±\sqrt{100-4\times 3\times 8}}{2\times 3}
Square -10.
y=\frac{-\left(-10\right)±\sqrt{100-12\times 8}}{2\times 3}
Multiply -4 times 3.
y=\frac{-\left(-10\right)±\sqrt{100-96}}{2\times 3}
Multiply -12 times 8.
y=\frac{-\left(-10\right)±\sqrt{4}}{2\times 3}
Add 100 to -96.
y=\frac{-\left(-10\right)±2}{2\times 3}
Take the square root of 4.
y=\frac{10±2}{2\times 3}
The opposite of -10 is 10.
y=\frac{10±2}{6}
Multiply 2 times 3.
y=\frac{12}{6}
Now solve the equation y=\frac{10±2}{6} when ± is plus. Add 10 to 2.
y=2
Divide 12 by 6.
y=\frac{8}{6}
Now solve the equation y=\frac{10±2}{6} when ± is minus. Subtract 2 from 10.
y=\frac{4}{3}
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
y=2 y=\frac{4}{3}
The equation is now solved.
3y^{2}-6y=4y-8
Use the distributive property to multiply 3y by y-2.
3y^{2}-6y-4y=-8
Subtract 4y from both sides.
3y^{2}-10y=-8
Combine -6y and -4y to get -10y.
\frac{3y^{2}-10y}{3}=-\frac{8}{3}
Divide both sides by 3.
y^{2}-\frac{10}{3}y=-\frac{8}{3}
Dividing by 3 undoes the multiplication by 3.
y^{2}-\frac{10}{3}y+\left(-\frac{5}{3}\right)^{2}=-\frac{8}{3}+\left(-\frac{5}{3}\right)^{2}
Divide -\frac{10}{3}, the coefficient of the x term, by 2 to get -\frac{5}{3}. Then add the square of -\frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{10}{3}y+\frac{25}{9}=-\frac{8}{3}+\frac{25}{9}
Square -\frac{5}{3} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{10}{3}y+\frac{25}{9}=\frac{1}{9}
Add -\frac{8}{3} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{5}{3}\right)^{2}=\frac{1}{9}
Factor y^{2}-\frac{10}{3}y+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{5}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Take the square root of both sides of the equation.
y-\frac{5}{3}=\frac{1}{3} y-\frac{5}{3}=-\frac{1}{3}
Simplify.
y=2 y=\frac{4}{3}
Add \frac{5}{3} to both sides of the equation.