Solve for y
y=2
y = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Share
Copied to clipboard
3y^{2}-6y=4y-8
Use the distributive property to multiply 3y by y-2.
3y^{2}-6y-4y=-8
Subtract 4y from both sides.
3y^{2}-10y=-8
Combine -6y and -4y to get -10y.
3y^{2}-10y+8=0
Add 8 to both sides.
y=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 3\times 8}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -10 for b, and 8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-10\right)±\sqrt{100-4\times 3\times 8}}{2\times 3}
Square -10.
y=\frac{-\left(-10\right)±\sqrt{100-12\times 8}}{2\times 3}
Multiply -4 times 3.
y=\frac{-\left(-10\right)±\sqrt{100-96}}{2\times 3}
Multiply -12 times 8.
y=\frac{-\left(-10\right)±\sqrt{4}}{2\times 3}
Add 100 to -96.
y=\frac{-\left(-10\right)±2}{2\times 3}
Take the square root of 4.
y=\frac{10±2}{2\times 3}
The opposite of -10 is 10.
y=\frac{10±2}{6}
Multiply 2 times 3.
y=\frac{12}{6}
Now solve the equation y=\frac{10±2}{6} when ± is plus. Add 10 to 2.
y=2
Divide 12 by 6.
y=\frac{8}{6}
Now solve the equation y=\frac{10±2}{6} when ± is minus. Subtract 2 from 10.
y=\frac{4}{3}
Reduce the fraction \frac{8}{6} to lowest terms by extracting and canceling out 2.
y=2 y=\frac{4}{3}
The equation is now solved.
3y^{2}-6y=4y-8
Use the distributive property to multiply 3y by y-2.
3y^{2}-6y-4y=-8
Subtract 4y from both sides.
3y^{2}-10y=-8
Combine -6y and -4y to get -10y.
\frac{3y^{2}-10y}{3}=-\frac{8}{3}
Divide both sides by 3.
y^{2}-\frac{10}{3}y=-\frac{8}{3}
Dividing by 3 undoes the multiplication by 3.
y^{2}-\frac{10}{3}y+\left(-\frac{5}{3}\right)^{2}=-\frac{8}{3}+\left(-\frac{5}{3}\right)^{2}
Divide -\frac{10}{3}, the coefficient of the x term, by 2 to get -\frac{5}{3}. Then add the square of -\frac{5}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{10}{3}y+\frac{25}{9}=-\frac{8}{3}+\frac{25}{9}
Square -\frac{5}{3} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{10}{3}y+\frac{25}{9}=\frac{1}{9}
Add -\frac{8}{3} to \frac{25}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{5}{3}\right)^{2}=\frac{1}{9}
Factor y^{2}-\frac{10}{3}y+\frac{25}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{5}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
Take the square root of both sides of the equation.
y-\frac{5}{3}=\frac{1}{3} y-\frac{5}{3}=-\frac{1}{3}
Simplify.
y=2 y=\frac{4}{3}
Add \frac{5}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}