Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3y^{2}-3y=2\left(y-1\right)
Use the distributive property to multiply 3y by y-1.
3y^{2}-3y=2y-2
Use the distributive property to multiply 2 by y-1.
3y^{2}-3y-2y=-2
Subtract 2y from both sides.
3y^{2}-5y=-2
Combine -3y and -2y to get -5y.
3y^{2}-5y+2=0
Add 2 to both sides.
y=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 3\times 2}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -5 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-5\right)±\sqrt{25-4\times 3\times 2}}{2\times 3}
Square -5.
y=\frac{-\left(-5\right)±\sqrt{25-12\times 2}}{2\times 3}
Multiply -4 times 3.
y=\frac{-\left(-5\right)±\sqrt{25-24}}{2\times 3}
Multiply -12 times 2.
y=\frac{-\left(-5\right)±\sqrt{1}}{2\times 3}
Add 25 to -24.
y=\frac{-\left(-5\right)±1}{2\times 3}
Take the square root of 1.
y=\frac{5±1}{2\times 3}
The opposite of -5 is 5.
y=\frac{5±1}{6}
Multiply 2 times 3.
y=\frac{6}{6}
Now solve the equation y=\frac{5±1}{6} when ± is plus. Add 5 to 1.
y=1
Divide 6 by 6.
y=\frac{4}{6}
Now solve the equation y=\frac{5±1}{6} when ± is minus. Subtract 1 from 5.
y=\frac{2}{3}
Reduce the fraction \frac{4}{6} to lowest terms by extracting and canceling out 2.
y=1 y=\frac{2}{3}
The equation is now solved.
3y^{2}-3y=2\left(y-1\right)
Use the distributive property to multiply 3y by y-1.
3y^{2}-3y=2y-2
Use the distributive property to multiply 2 by y-1.
3y^{2}-3y-2y=-2
Subtract 2y from both sides.
3y^{2}-5y=-2
Combine -3y and -2y to get -5y.
\frac{3y^{2}-5y}{3}=-\frac{2}{3}
Divide both sides by 3.
y^{2}-\frac{5}{3}y=-\frac{2}{3}
Dividing by 3 undoes the multiplication by 3.
y^{2}-\frac{5}{3}y+\left(-\frac{5}{6}\right)^{2}=-\frac{2}{3}+\left(-\frac{5}{6}\right)^{2}
Divide -\frac{5}{3}, the coefficient of the x term, by 2 to get -\frac{5}{6}. Then add the square of -\frac{5}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{5}{3}y+\frac{25}{36}=-\frac{2}{3}+\frac{25}{36}
Square -\frac{5}{6} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{5}{3}y+\frac{25}{36}=\frac{1}{36}
Add -\frac{2}{3} to \frac{25}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{5}{6}\right)^{2}=\frac{1}{36}
Factor y^{2}-\frac{5}{3}y+\frac{25}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{5}{6}\right)^{2}}=\sqrt{\frac{1}{36}}
Take the square root of both sides of the equation.
y-\frac{5}{6}=\frac{1}{6} y-\frac{5}{6}=-\frac{1}{6}
Simplify.
y=1 y=\frac{2}{3}
Add \frac{5}{6} to both sides of the equation.