Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

12y^{2}-9y=8y-6
Use the distributive property to multiply 3y by 4y-3.
12y^{2}-9y-8y=-6
Subtract 8y from both sides.
12y^{2}-17y=-6
Combine -9y and -8y to get -17y.
12y^{2}-17y+6=0
Add 6 to both sides.
y=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 12\times 6}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -17 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-17\right)±\sqrt{289-4\times 12\times 6}}{2\times 12}
Square -17.
y=\frac{-\left(-17\right)±\sqrt{289-48\times 6}}{2\times 12}
Multiply -4 times 12.
y=\frac{-\left(-17\right)±\sqrt{289-288}}{2\times 12}
Multiply -48 times 6.
y=\frac{-\left(-17\right)±\sqrt{1}}{2\times 12}
Add 289 to -288.
y=\frac{-\left(-17\right)±1}{2\times 12}
Take the square root of 1.
y=\frac{17±1}{2\times 12}
The opposite of -17 is 17.
y=\frac{17±1}{24}
Multiply 2 times 12.
y=\frac{18}{24}
Now solve the equation y=\frac{17±1}{24} when ± is plus. Add 17 to 1.
y=\frac{3}{4}
Reduce the fraction \frac{18}{24} to lowest terms by extracting and canceling out 6.
y=\frac{16}{24}
Now solve the equation y=\frac{17±1}{24} when ± is minus. Subtract 1 from 17.
y=\frac{2}{3}
Reduce the fraction \frac{16}{24} to lowest terms by extracting and canceling out 8.
y=\frac{3}{4} y=\frac{2}{3}
The equation is now solved.
12y^{2}-9y=8y-6
Use the distributive property to multiply 3y by 4y-3.
12y^{2}-9y-8y=-6
Subtract 8y from both sides.
12y^{2}-17y=-6
Combine -9y and -8y to get -17y.
\frac{12y^{2}-17y}{12}=-\frac{6}{12}
Divide both sides by 12.
y^{2}-\frac{17}{12}y=-\frac{6}{12}
Dividing by 12 undoes the multiplication by 12.
y^{2}-\frac{17}{12}y=-\frac{1}{2}
Reduce the fraction \frac{-6}{12} to lowest terms by extracting and canceling out 6.
y^{2}-\frac{17}{12}y+\left(-\frac{17}{24}\right)^{2}=-\frac{1}{2}+\left(-\frac{17}{24}\right)^{2}
Divide -\frac{17}{12}, the coefficient of the x term, by 2 to get -\frac{17}{24}. Then add the square of -\frac{17}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{17}{12}y+\frac{289}{576}=-\frac{1}{2}+\frac{289}{576}
Square -\frac{17}{24} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{17}{12}y+\frac{289}{576}=\frac{1}{576}
Add -\frac{1}{2} to \frac{289}{576} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{17}{24}\right)^{2}=\frac{1}{576}
Factor y^{2}-\frac{17}{12}y+\frac{289}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{17}{24}\right)^{2}}=\sqrt{\frac{1}{576}}
Take the square root of both sides of the equation.
y-\frac{17}{24}=\frac{1}{24} y-\frac{17}{24}=-\frac{1}{24}
Simplify.
y=\frac{3}{4} y=\frac{2}{3}
Add \frac{17}{24} to both sides of the equation.