Solve for y
y=\frac{2}{3}\approx 0.666666667
y=\frac{3}{4}=0.75
Graph
Share
Copied to clipboard
12y^{2}-9y=8y-6
Use the distributive property to multiply 3y by 4y-3.
12y^{2}-9y-8y=-6
Subtract 8y from both sides.
12y^{2}-17y=-6
Combine -9y and -8y to get -17y.
12y^{2}-17y+6=0
Add 6 to both sides.
y=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 12\times 6}}{2\times 12}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 12 for a, -17 for b, and 6 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
y=\frac{-\left(-17\right)±\sqrt{289-4\times 12\times 6}}{2\times 12}
Square -17.
y=\frac{-\left(-17\right)±\sqrt{289-48\times 6}}{2\times 12}
Multiply -4 times 12.
y=\frac{-\left(-17\right)±\sqrt{289-288}}{2\times 12}
Multiply -48 times 6.
y=\frac{-\left(-17\right)±\sqrt{1}}{2\times 12}
Add 289 to -288.
y=\frac{-\left(-17\right)±1}{2\times 12}
Take the square root of 1.
y=\frac{17±1}{2\times 12}
The opposite of -17 is 17.
y=\frac{17±1}{24}
Multiply 2 times 12.
y=\frac{18}{24}
Now solve the equation y=\frac{17±1}{24} when ± is plus. Add 17 to 1.
y=\frac{3}{4}
Reduce the fraction \frac{18}{24} to lowest terms by extracting and canceling out 6.
y=\frac{16}{24}
Now solve the equation y=\frac{17±1}{24} when ± is minus. Subtract 1 from 17.
y=\frac{2}{3}
Reduce the fraction \frac{16}{24} to lowest terms by extracting and canceling out 8.
y=\frac{3}{4} y=\frac{2}{3}
The equation is now solved.
12y^{2}-9y=8y-6
Use the distributive property to multiply 3y by 4y-3.
12y^{2}-9y-8y=-6
Subtract 8y from both sides.
12y^{2}-17y=-6
Combine -9y and -8y to get -17y.
\frac{12y^{2}-17y}{12}=-\frac{6}{12}
Divide both sides by 12.
y^{2}-\frac{17}{12}y=-\frac{6}{12}
Dividing by 12 undoes the multiplication by 12.
y^{2}-\frac{17}{12}y=-\frac{1}{2}
Reduce the fraction \frac{-6}{12} to lowest terms by extracting and canceling out 6.
y^{2}-\frac{17}{12}y+\left(-\frac{17}{24}\right)^{2}=-\frac{1}{2}+\left(-\frac{17}{24}\right)^{2}
Divide -\frac{17}{12}, the coefficient of the x term, by 2 to get -\frac{17}{24}. Then add the square of -\frac{17}{24} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
y^{2}-\frac{17}{12}y+\frac{289}{576}=-\frac{1}{2}+\frac{289}{576}
Square -\frac{17}{24} by squaring both the numerator and the denominator of the fraction.
y^{2}-\frac{17}{12}y+\frac{289}{576}=\frac{1}{576}
Add -\frac{1}{2} to \frac{289}{576} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(y-\frac{17}{24}\right)^{2}=\frac{1}{576}
Factor y^{2}-\frac{17}{12}y+\frac{289}{576}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(y-\frac{17}{24}\right)^{2}}=\sqrt{\frac{1}{576}}
Take the square root of both sides of the equation.
y-\frac{17}{24}=\frac{1}{24} y-\frac{17}{24}=-\frac{1}{24}
Simplify.
y=\frac{3}{4} y=\frac{2}{3}
Add \frac{17}{24} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}