Factor
y\left(y+7\right)\left(3y+2\right)
Evaluate
y\left(y+7\right)\left(3y+2\right)
Graph
Share
Copied to clipboard
y\left(3y^{2}+23y+14\right)
Factor out y.
a+b=23 ab=3\times 14=42
Consider 3y^{2}+23y+14. Factor the expression by grouping. First, the expression needs to be rewritten as 3y^{2}+ay+by+14. To find a and b, set up a system to be solved.
1,42 2,21 3,14 6,7
Since ab is positive, a and b have the same sign. Since a+b is positive, a and b are both positive. List all such integer pairs that give product 42.
1+42=43 2+21=23 3+14=17 6+7=13
Calculate the sum for each pair.
a=2 b=21
The solution is the pair that gives sum 23.
\left(3y^{2}+2y\right)+\left(21y+14\right)
Rewrite 3y^{2}+23y+14 as \left(3y^{2}+2y\right)+\left(21y+14\right).
y\left(3y+2\right)+7\left(3y+2\right)
Factor out y in the first and 7 in the second group.
\left(3y+2\right)\left(y+7\right)
Factor out common term 3y+2 by using distributive property.
y\left(3y+2\right)\left(y+7\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}