Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(y^{2}-5y\right)
Factor out 3.
y\left(y-5\right)
Consider y^{2}-5y. Factor out y.
3y\left(y-5\right)
Rewrite the complete factored expression.
3y^{2}-15y=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
y=\frac{-\left(-15\right)±\sqrt{\left(-15\right)^{2}}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
y=\frac{-\left(-15\right)±15}{2\times 3}
Take the square root of \left(-15\right)^{2}.
y=\frac{15±15}{2\times 3}
The opposite of -15 is 15.
y=\frac{15±15}{6}
Multiply 2 times 3.
y=\frac{30}{6}
Now solve the equation y=\frac{15±15}{6} when ± is plus. Add 15 to 15.
y=5
Divide 30 by 6.
y=\frac{0}{6}
Now solve the equation y=\frac{15±15}{6} when ± is minus. Subtract 15 from 15.
y=0
Divide 0 by 6.
3y^{2}-15y=3\left(y-5\right)y
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 5 for x_{1} and 0 for x_{2}.