Skip to main content
Solve for x
Tick mark Image
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

3y=\left(3x+1\right)\sqrt{3}
Subtract 2 from 3 to get 1.
3y=3x\sqrt{3}+\sqrt{3}
Use the distributive property to multiply 3x+1 by \sqrt{3}.
3x\sqrt{3}+\sqrt{3}=3y
Swap sides so that all variable terms are on the left hand side.
3x\sqrt{3}=3y-\sqrt{3}
Subtract \sqrt{3} from both sides.
3\sqrt{3}x=3y-\sqrt{3}
The equation is in standard form.
\frac{3\sqrt{3}x}{3\sqrt{3}}=\frac{3y-\sqrt{3}}{3\sqrt{3}}
Divide both sides by 3\sqrt{3}.
x=\frac{3y-\sqrt{3}}{3\sqrt{3}}
Dividing by 3\sqrt{3} undoes the multiplication by 3\sqrt{3}.
x=\frac{\sqrt{3}y-1}{3}
Divide 3y-\sqrt{3} by 3\sqrt{3}.
3y=\left(3x+1\right)\sqrt{3}
Subtract 2 from 3 to get 1.
3y=3x\sqrt{3}+\sqrt{3}
Use the distributive property to multiply 3x+1 by \sqrt{3}.
3y=3\sqrt{3}x+\sqrt{3}
The equation is in standard form.
\frac{3y}{3}=\frac{\sqrt{3}\left(3x+1\right)}{3}
Divide both sides by 3.
y=\frac{\sqrt{3}\left(3x+1\right)}{3}
Dividing by 3 undoes the multiplication by 3.