Solve for p
\left\{\begin{matrix}p=-\frac{z\left(y+q\right)}{3xy}\text{, }&y\neq 0\text{ and }x\neq 0\\p\in \mathrm{R}\text{, }&\left(z=0\text{ and }x=0\right)\text{ or }\left(z=0\text{ and }y=0\right)\text{ or }\left(y=-q\text{ and }x=0\right)\text{ or }\left(y=0\text{ and }q=0\right)\end{matrix}\right.
Solve for q
\left\{\begin{matrix}q=-\frac{y\left(3px+z\right)}{z}\text{, }&z\neq 0\\q\in \mathrm{R}\text{, }&z=0\text{ and }\left(x=0\text{ or }p=0\text{ or }y=0\right)\end{matrix}\right.
Share
Copied to clipboard
3xyp+yz=-zq
Subtract zq from both sides. Anything subtracted from zero gives its negation.
3xyp=-zq-yz
Subtract yz from both sides.
3pxy=-yz-qz
Reorder the terms.
3xyp=-yz-qz
The equation is in standard form.
\frac{3xyp}{3xy}=-\frac{z\left(y+q\right)}{3xy}
Divide both sides by 3xy.
p=-\frac{z\left(y+q\right)}{3xy}
Dividing by 3xy undoes the multiplication by 3xy.
zq+yz=-3xyp
Subtract 3xyp from both sides. Anything subtracted from zero gives its negation.
zq=-3xyp-yz
Subtract yz from both sides.
zq=-3pxy-yz
The equation is in standard form.
\frac{zq}{z}=-\frac{y\left(3px+z\right)}{z}
Divide both sides by z.
q=-\frac{y\left(3px+z\right)}{z}
Dividing by z undoes the multiplication by z.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}