Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Solve for A (complex solution)
Tick mark Image
Solve for A
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x\left(A-3i\right)\left(A+3i\right)-AA^{3}=\left(A-3i\right)\left(A+3i\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
Multiply both sides of the equation by \left(A-3i\right)\left(A+3i\right).
3x\left(A-3i\right)\left(A+3i\right)-A^{4}=\left(A-3i\right)\left(A+3i\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
\left(3xA-9ix\right)\left(A+3i\right)-A^{4}=\left(A-3i\right)\left(A+3i\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
Use the distributive property to multiply 3x by A-3i.
3xA^{2}+27x-A^{4}=\left(A-3i\right)\left(A+3i\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
Use the distributive property to multiply 3xA-9ix by A+3i and combine like terms.
3xA^{2}+27x-A^{4}=\left(A^{2}+9\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
Use the distributive property to multiply A-3i by A+3i and combine like terms.
3xA^{2}+27x-A^{4}=9A^{2}+81-A^{2}\left(A-3i\right)\left(A+3i\right)
Use the distributive property to multiply A^{2}+9 by 9.
3xA^{2}+27x-A^{4}=9A^{2}+81+\left(-A^{3}+3iA^{2}\right)\left(A+3i\right)
Use the distributive property to multiply -A^{2} by A-3i.
3xA^{2}+27x-A^{4}=9A^{2}+81-A^{4}-9A^{2}
Use the distributive property to multiply -A^{3}+3iA^{2} by A+3i and combine like terms.
3xA^{2}+27x-A^{4}=81-A^{4}
Combine 9A^{2} and -9A^{2} to get 0.
3xA^{2}+27x=81-A^{4}+A^{4}
Add A^{4} to both sides.
3xA^{2}+27x=81
Combine -A^{4} and A^{4} to get 0.
\left(3A^{2}+27\right)x=81
Combine all terms containing x.
\frac{\left(3A^{2}+27\right)x}{3A^{2}+27}=\frac{81}{3A^{2}+27}
Divide both sides by 3A^{2}+27.
x=\frac{81}{3A^{2}+27}
Dividing by 3A^{2}+27 undoes the multiplication by 3A^{2}+27.
x=\frac{27}{A^{2}+9}
Divide 81 by 3A^{2}+27.
3x\left(A^{2}+9\right)-AA^{3}=\left(A^{2}+9\right)\times 9-A^{2}\left(A^{2}+9\right)
Multiply both sides of the equation by A^{2}+9.
3x\left(A^{2}+9\right)-A^{4}=\left(A^{2}+9\right)\times 9-A^{2}\left(A^{2}+9\right)
To multiply powers of the same base, add their exponents. Add 1 and 3 to get 4.
3xA^{2}+27x-A^{4}=\left(A^{2}+9\right)\times 9-A^{2}\left(A^{2}+9\right)
Use the distributive property to multiply 3x by A^{2}+9.
3xA^{2}+27x-A^{4}=9A^{2}+81-A^{2}\left(A^{2}+9\right)
Use the distributive property to multiply A^{2}+9 by 9.
3xA^{2}+27x-A^{4}=9A^{2}+81-A^{4}-9A^{2}
Use the distributive property to multiply -A^{2} by A^{2}+9.
3xA^{2}+27x-A^{4}=81-A^{4}
Combine 9A^{2} and -9A^{2} to get 0.
3xA^{2}+27x=81-A^{4}+A^{4}
Add A^{4} to both sides.
3xA^{2}+27x=81
Combine -A^{4} and A^{4} to get 0.
\left(3A^{2}+27\right)x=81
Combine all terms containing x.
\frac{\left(3A^{2}+27\right)x}{3A^{2}+27}=\frac{81}{3A^{2}+27}
Divide both sides by 3A^{2}+27.
x=\frac{81}{3A^{2}+27}
Dividing by 3A^{2}+27 undoes the multiplication by 3A^{2}+27.
x=\frac{27}{A^{2}+9}
Divide 81 by 3A^{2}+27.