Solve for x
x=3\left(y+6\right)
Solve for y
y=\frac{x-18}{3}
Graph
Share
Copied to clipboard
3x-6y-x=36
Subtract x from both sides.
2x-6y=36
Combine 3x and -x to get 2x.
2x=36+6y
Add 6y to both sides.
2x=6y+36
The equation is in standard form.
\frac{2x}{2}=\frac{6y+36}{2}
Divide both sides by 2.
x=\frac{6y+36}{2}
Dividing by 2 undoes the multiplication by 2.
x=3y+18
Divide 36+6y by 2.
-6y=36+x-3x
Subtract 3x from both sides.
-6y=36-2x
Combine x and -3x to get -2x.
\frac{-6y}{-6}=\frac{36-2x}{-6}
Divide both sides by -6.
y=\frac{36-2x}{-6}
Dividing by -6 undoes the multiplication by -6.
y=\frac{x}{3}-6
Divide 36-2x by -6.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}