Solve for b (complex solution)
\left\{\begin{matrix}b=-\frac{2\left(x+1\right)}{5y}\text{, }&y\neq 0\\b\in \mathrm{C}\text{, }&x=-1\text{ and }y=0\end{matrix}\right.
Solve for b
\left\{\begin{matrix}b=-\frac{2\left(x+1\right)}{5y}\text{, }&y\neq 0\\b\in \mathrm{R}\text{, }&x=-1\text{ and }y=0\end{matrix}\right.
Solve for x
x=-\frac{5by}{2}-1
Graph
Share
Copied to clipboard
-5yb=5x+2-3x
Subtract 3x from both sides.
-5yb=2x+2
Combine 5x and -3x to get 2x.
\left(-5y\right)b=2x+2
The equation is in standard form.
\frac{\left(-5y\right)b}{-5y}=\frac{2x+2}{-5y}
Divide both sides by -5y.
b=\frac{2x+2}{-5y}
Dividing by -5y undoes the multiplication by -5y.
b=-\frac{2\left(x+1\right)}{5y}
Divide 2+2x by -5y.
-5yb=5x+2-3x
Subtract 3x from both sides.
-5yb=2x+2
Combine 5x and -3x to get 2x.
\left(-5y\right)b=2x+2
The equation is in standard form.
\frac{\left(-5y\right)b}{-5y}=\frac{2x+2}{-5y}
Divide both sides by -5y.
b=\frac{2x+2}{-5y}
Dividing by -5y undoes the multiplication by -5y.
b=-\frac{2\left(x+1\right)}{5y}
Divide 2+2x by -5y.
3x-5yb-5x=2
Subtract 5x from both sides.
-2x-5yb=2
Combine 3x and -5x to get -2x.
-2x=2+5yb
Add 5yb to both sides.
-2x=5by+2
The equation is in standard form.
\frac{-2x}{-2}=\frac{5by+2}{-2}
Divide both sides by -2.
x=\frac{5by+2}{-2}
Dividing by -2 undoes the multiplication by -2.
x=-\frac{5by}{2}-1
Divide 2+5yb by -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}