Solve for x
x=2
Graph
Share
Copied to clipboard
3x-5+\frac{1}{5}\times 3x+\frac{1}{5}\times 4=2x-1
Use the distributive property to multiply \frac{1}{5} by 3x+4.
3x-5+\frac{3}{5}x+\frac{1}{5}\times 4=2x-1
Multiply \frac{1}{5} and 3 to get \frac{3}{5}.
3x-5+\frac{3}{5}x+\frac{4}{5}=2x-1
Multiply \frac{1}{5} and 4 to get \frac{4}{5}.
\frac{18}{5}x-5+\frac{4}{5}=2x-1
Combine 3x and \frac{3}{5}x to get \frac{18}{5}x.
\frac{18}{5}x-\frac{25}{5}+\frac{4}{5}=2x-1
Convert -5 to fraction -\frac{25}{5}.
\frac{18}{5}x+\frac{-25+4}{5}=2x-1
Since -\frac{25}{5} and \frac{4}{5} have the same denominator, add them by adding their numerators.
\frac{18}{5}x-\frac{21}{5}=2x-1
Add -25 and 4 to get -21.
\frac{18}{5}x-\frac{21}{5}-2x=-1
Subtract 2x from both sides.
\frac{8}{5}x-\frac{21}{5}=-1
Combine \frac{18}{5}x and -2x to get \frac{8}{5}x.
\frac{8}{5}x=-1+\frac{21}{5}
Add \frac{21}{5} to both sides.
\frac{8}{5}x=-\frac{5}{5}+\frac{21}{5}
Convert -1 to fraction -\frac{5}{5}.
\frac{8}{5}x=\frac{-5+21}{5}
Since -\frac{5}{5} and \frac{21}{5} have the same denominator, add them by adding their numerators.
\frac{8}{5}x=\frac{16}{5}
Add -5 and 21 to get 16.
x=\frac{16}{5}\times \frac{5}{8}
Multiply both sides by \frac{5}{8}, the reciprocal of \frac{8}{5}.
x=\frac{16\times 5}{5\times 8}
Multiply \frac{16}{5} times \frac{5}{8} by multiplying numerator times numerator and denominator times denominator.
x=\frac{16}{8}
Cancel out 5 in both numerator and denominator.
x=2
Divide 16 by 8 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}