Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x\times 3x+3x\left(-4\right)=-1+3x\times \frac{16}{3}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x, the least common multiple of 3x,3.
9xx+3x\left(-4\right)=-1+3x\times \frac{16}{3}
Multiply 3 and 3 to get 9.
9x^{2}+3x\left(-4\right)=-1+3x\times \frac{16}{3}
Multiply x and x to get x^{2}.
9x^{2}-12x=-1+3x\times \frac{16}{3}
Multiply 3 and -4 to get -12.
9x^{2}-12x=-1+16x
Multiply 3 and \frac{16}{3} to get 16.
9x^{2}-12x-\left(-1\right)=16x
Subtract -1 from both sides.
9x^{2}-12x+1=16x
The opposite of -1 is 1.
9x^{2}-12x+1-16x=0
Subtract 16x from both sides.
9x^{2}-28x+1=0
Combine -12x and -16x to get -28x.
x=\frac{-\left(-28\right)±\sqrt{\left(-28\right)^{2}-4\times 9}}{2\times 9}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 9 for a, -28 for b, and 1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-28\right)±\sqrt{784-4\times 9}}{2\times 9}
Square -28.
x=\frac{-\left(-28\right)±\sqrt{784-36}}{2\times 9}
Multiply -4 times 9.
x=\frac{-\left(-28\right)±\sqrt{748}}{2\times 9}
Add 784 to -36.
x=\frac{-\left(-28\right)±2\sqrt{187}}{2\times 9}
Take the square root of 748.
x=\frac{28±2\sqrt{187}}{2\times 9}
The opposite of -28 is 28.
x=\frac{28±2\sqrt{187}}{18}
Multiply 2 times 9.
x=\frac{2\sqrt{187}+28}{18}
Now solve the equation x=\frac{28±2\sqrt{187}}{18} when ± is plus. Add 28 to 2\sqrt{187}.
x=\frac{\sqrt{187}+14}{9}
Divide 28+2\sqrt{187} by 18.
x=\frac{28-2\sqrt{187}}{18}
Now solve the equation x=\frac{28±2\sqrt{187}}{18} when ± is minus. Subtract 2\sqrt{187} from 28.
x=\frac{14-\sqrt{187}}{9}
Divide 28-2\sqrt{187} by 18.
x=\frac{\sqrt{187}+14}{9} x=\frac{14-\sqrt{187}}{9}
The equation is now solved.
3x\times 3x+3x\left(-4\right)=-1+3x\times \frac{16}{3}
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3x, the least common multiple of 3x,3.
9xx+3x\left(-4\right)=-1+3x\times \frac{16}{3}
Multiply 3 and 3 to get 9.
9x^{2}+3x\left(-4\right)=-1+3x\times \frac{16}{3}
Multiply x and x to get x^{2}.
9x^{2}-12x=-1+3x\times \frac{16}{3}
Multiply 3 and -4 to get -12.
9x^{2}-12x=-1+16x
Multiply 3 and \frac{16}{3} to get 16.
9x^{2}-12x-16x=-1
Subtract 16x from both sides.
9x^{2}-28x=-1
Combine -12x and -16x to get -28x.
\frac{9x^{2}-28x}{9}=-\frac{1}{9}
Divide both sides by 9.
x^{2}-\frac{28}{9}x=-\frac{1}{9}
Dividing by 9 undoes the multiplication by 9.
x^{2}-\frac{28}{9}x+\left(-\frac{14}{9}\right)^{2}=-\frac{1}{9}+\left(-\frac{14}{9}\right)^{2}
Divide -\frac{28}{9}, the coefficient of the x term, by 2 to get -\frac{14}{9}. Then add the square of -\frac{14}{9} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{28}{9}x+\frac{196}{81}=-\frac{1}{9}+\frac{196}{81}
Square -\frac{14}{9} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{28}{9}x+\frac{196}{81}=\frac{187}{81}
Add -\frac{1}{9} to \frac{196}{81} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{14}{9}\right)^{2}=\frac{187}{81}
Factor x^{2}-\frac{28}{9}x+\frac{196}{81}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{14}{9}\right)^{2}}=\sqrt{\frac{187}{81}}
Take the square root of both sides of the equation.
x-\frac{14}{9}=\frac{\sqrt{187}}{9} x-\frac{14}{9}=-\frac{\sqrt{187}}{9}
Simplify.
x=\frac{\sqrt{187}+14}{9} x=\frac{14-\sqrt{187}}{9}
Add \frac{14}{9} to both sides of the equation.