Solve for x
x\leq \frac{28}{15}
Graph
Share
Copied to clipboard
3x-\frac{2}{3}-\frac{1}{2}x\leq 4
Subtract \frac{1}{2}x from both sides.
\frac{5}{2}x-\frac{2}{3}\leq 4
Combine 3x and -\frac{1}{2}x to get \frac{5}{2}x.
\frac{5}{2}x\leq 4+\frac{2}{3}
Add \frac{2}{3} to both sides.
\frac{5}{2}x\leq \frac{12}{3}+\frac{2}{3}
Convert 4 to fraction \frac{12}{3}.
\frac{5}{2}x\leq \frac{12+2}{3}
Since \frac{12}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
\frac{5}{2}x\leq \frac{14}{3}
Add 12 and 2 to get 14.
x\leq \frac{14}{3}\times \frac{2}{5}
Multiply both sides by \frac{2}{5}, the reciprocal of \frac{5}{2}. Since \frac{5}{2} is positive, the inequality direction remains the same.
x\leq \frac{14\times 2}{3\times 5}
Multiply \frac{14}{3} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
x\leq \frac{28}{15}
Do the multiplications in the fraction \frac{14\times 2}{3\times 5}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}