Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x\left(x-2\right)-1=-\left(x-1\right)
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by x-2, the least common multiple of x-2,2-x.
3x^{2}-6x-1=-\left(x-1\right)
Use the distributive property to multiply 3x by x-2.
3x^{2}-6x-1=-x+1
To find the opposite of x-1, find the opposite of each term.
3x^{2}-6x-1+x=1
Add x to both sides.
3x^{2}-5x-1=1
Combine -6x and x to get -5x.
3x^{2}-5x-1-1=0
Subtract 1 from both sides.
3x^{2}-5x-2=0
Subtract 1 from -1 to get -2.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 3\left(-2\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -5 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 3\left(-2\right)}}{2\times 3}
Square -5.
x=\frac{-\left(-5\right)±\sqrt{25-12\left(-2\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-5\right)±\sqrt{25+24}}{2\times 3}
Multiply -12 times -2.
x=\frac{-\left(-5\right)±\sqrt{49}}{2\times 3}
Add 25 to 24.
x=\frac{-\left(-5\right)±7}{2\times 3}
Take the square root of 49.
x=\frac{5±7}{2\times 3}
The opposite of -5 is 5.
x=\frac{5±7}{6}
Multiply 2 times 3.
x=\frac{12}{6}
Now solve the equation x=\frac{5±7}{6} when ± is plus. Add 5 to 7.
x=2
Divide 12 by 6.
x=-\frac{2}{6}
Now solve the equation x=\frac{5±7}{6} when ± is minus. Subtract 7 from 5.
x=-\frac{1}{3}
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
x=2 x=-\frac{1}{3}
The equation is now solved.
x=-\frac{1}{3}
Variable x cannot be equal to 2.
3x\left(x-2\right)-1=-\left(x-1\right)
Variable x cannot be equal to 2 since division by zero is not defined. Multiply both sides of the equation by x-2, the least common multiple of x-2,2-x.
3x^{2}-6x-1=-\left(x-1\right)
Use the distributive property to multiply 3x by x-2.
3x^{2}-6x-1=-x+1
To find the opposite of x-1, find the opposite of each term.
3x^{2}-6x-1+x=1
Add x to both sides.
3x^{2}-5x-1=1
Combine -6x and x to get -5x.
3x^{2}-5x=1+1
Add 1 to both sides.
3x^{2}-5x=2
Add 1 and 1 to get 2.
\frac{3x^{2}-5x}{3}=\frac{2}{3}
Divide both sides by 3.
x^{2}-\frac{5}{3}x=\frac{2}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{5}{3}x+\left(-\frac{5}{6}\right)^{2}=\frac{2}{3}+\left(-\frac{5}{6}\right)^{2}
Divide -\frac{5}{3}, the coefficient of the x term, by 2 to get -\frac{5}{6}. Then add the square of -\frac{5}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{3}x+\frac{25}{36}=\frac{2}{3}+\frac{25}{36}
Square -\frac{5}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{3}x+\frac{25}{36}=\frac{49}{36}
Add \frac{2}{3} to \frac{25}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{6}\right)^{2}=\frac{49}{36}
Factor x^{2}-\frac{5}{3}x+\frac{25}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{6}\right)^{2}}=\sqrt{\frac{49}{36}}
Take the square root of both sides of the equation.
x-\frac{5}{6}=\frac{7}{6} x-\frac{5}{6}=-\frac{7}{6}
Simplify.
x=2 x=-\frac{1}{3}
Add \frac{5}{6} to both sides of the equation.
x=-\frac{1}{3}
Variable x cannot be equal to 2.