Solve for x
x=2
x=5
Graph
Share
Copied to clipboard
3x^{2}-15x=6\left(x-5\right)
Use the distributive property to multiply 3x by x-5.
3x^{2}-15x=6x-30
Use the distributive property to multiply 6 by x-5.
3x^{2}-15x-6x=-30
Subtract 6x from both sides.
3x^{2}-21x=-30
Combine -15x and -6x to get -21x.
3x^{2}-21x+30=0
Add 30 to both sides.
x=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 3\times 30}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -21 for b, and 30 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-21\right)±\sqrt{441-4\times 3\times 30}}{2\times 3}
Square -21.
x=\frac{-\left(-21\right)±\sqrt{441-12\times 30}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-21\right)±\sqrt{441-360}}{2\times 3}
Multiply -12 times 30.
x=\frac{-\left(-21\right)±\sqrt{81}}{2\times 3}
Add 441 to -360.
x=\frac{-\left(-21\right)±9}{2\times 3}
Take the square root of 81.
x=\frac{21±9}{2\times 3}
The opposite of -21 is 21.
x=\frac{21±9}{6}
Multiply 2 times 3.
x=\frac{30}{6}
Now solve the equation x=\frac{21±9}{6} when ± is plus. Add 21 to 9.
x=5
Divide 30 by 6.
x=\frac{12}{6}
Now solve the equation x=\frac{21±9}{6} when ± is minus. Subtract 9 from 21.
x=2
Divide 12 by 6.
x=5 x=2
The equation is now solved.
3x^{2}-15x=6\left(x-5\right)
Use the distributive property to multiply 3x by x-5.
3x^{2}-15x=6x-30
Use the distributive property to multiply 6 by x-5.
3x^{2}-15x-6x=-30
Subtract 6x from both sides.
3x^{2}-21x=-30
Combine -15x and -6x to get -21x.
\frac{3x^{2}-21x}{3}=-\frac{30}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{21}{3}\right)x=-\frac{30}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-7x=-\frac{30}{3}
Divide -21 by 3.
x^{2}-7x=-10
Divide -30 by 3.
x^{2}-7x+\left(-\frac{7}{2}\right)^{2}=-10+\left(-\frac{7}{2}\right)^{2}
Divide -7, the coefficient of the x term, by 2 to get -\frac{7}{2}. Then add the square of -\frac{7}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-7x+\frac{49}{4}=-10+\frac{49}{4}
Square -\frac{7}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-7x+\frac{49}{4}=\frac{9}{4}
Add -10 to \frac{49}{4}.
\left(x-\frac{7}{2}\right)^{2}=\frac{9}{4}
Factor x^{2}-7x+\frac{49}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{2}\right)^{2}}=\sqrt{\frac{9}{4}}
Take the square root of both sides of the equation.
x-\frac{7}{2}=\frac{3}{2} x-\frac{7}{2}=-\frac{3}{2}
Simplify.
x=5 x=2
Add \frac{7}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}