Solve for x
x = \frac{\sqrt{265} + 17}{6} \approx 5.546470099
x=\frac{17-\sqrt{265}}{6}\approx 0.120196567
Graph
Share
Copied to clipboard
3x^{2}-12x=4x+x-2
Use the distributive property to multiply 3x by x-4.
3x^{2}-12x=5x-2
Combine 4x and x to get 5x.
3x^{2}-12x-5x=-2
Subtract 5x from both sides.
3x^{2}-17x=-2
Combine -12x and -5x to get -17x.
3x^{2}-17x+2=0
Add 2 to both sides.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 3\times 2}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -17 for b, and 2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 3\times 2}}{2\times 3}
Square -17.
x=\frac{-\left(-17\right)±\sqrt{289-12\times 2}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-17\right)±\sqrt{289-24}}{2\times 3}
Multiply -12 times 2.
x=\frac{-\left(-17\right)±\sqrt{265}}{2\times 3}
Add 289 to -24.
x=\frac{17±\sqrt{265}}{2\times 3}
The opposite of -17 is 17.
x=\frac{17±\sqrt{265}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{265}+17}{6}
Now solve the equation x=\frac{17±\sqrt{265}}{6} when ± is plus. Add 17 to \sqrt{265}.
x=\frac{17-\sqrt{265}}{6}
Now solve the equation x=\frac{17±\sqrt{265}}{6} when ± is minus. Subtract \sqrt{265} from 17.
x=\frac{\sqrt{265}+17}{6} x=\frac{17-\sqrt{265}}{6}
The equation is now solved.
3x^{2}-12x=4x+x-2
Use the distributive property to multiply 3x by x-4.
3x^{2}-12x=5x-2
Combine 4x and x to get 5x.
3x^{2}-12x-5x=-2
Subtract 5x from both sides.
3x^{2}-17x=-2
Combine -12x and -5x to get -17x.
\frac{3x^{2}-17x}{3}=-\frac{2}{3}
Divide both sides by 3.
x^{2}-\frac{17}{3}x=-\frac{2}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{17}{3}x+\left(-\frac{17}{6}\right)^{2}=-\frac{2}{3}+\left(-\frac{17}{6}\right)^{2}
Divide -\frac{17}{3}, the coefficient of the x term, by 2 to get -\frac{17}{6}. Then add the square of -\frac{17}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{17}{3}x+\frac{289}{36}=-\frac{2}{3}+\frac{289}{36}
Square -\frac{17}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{17}{3}x+\frac{289}{36}=\frac{265}{36}
Add -\frac{2}{3} to \frac{289}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{17}{6}\right)^{2}=\frac{265}{36}
Factor x^{2}-\frac{17}{3}x+\frac{289}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{6}\right)^{2}}=\sqrt{\frac{265}{36}}
Take the square root of both sides of the equation.
x-\frac{17}{6}=\frac{\sqrt{265}}{6} x-\frac{17}{6}=-\frac{\sqrt{265}}{6}
Simplify.
x=\frac{\sqrt{265}+17}{6} x=\frac{17-\sqrt{265}}{6}
Add \frac{17}{6} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}