Solve for x
x\in \left(0,\frac{11}{2}\right)
Graph
Share
Copied to clipboard
3x^{2}-12x<x\left(x-1\right)
Use the distributive property to multiply 3x by x-4.
3x^{2}-12x<x^{2}-x
Use the distributive property to multiply x by x-1.
3x^{2}-12x-x^{2}<-x
Subtract x^{2} from both sides.
2x^{2}-12x<-x
Combine 3x^{2} and -x^{2} to get 2x^{2}.
2x^{2}-12x+x<0
Add x to both sides.
2x^{2}-11x<0
Combine -12x and x to get -11x.
x\left(2x-11\right)<0
Factor out x.
x>0 x-\frac{11}{2}<0
For the product to be negative, x and x-\frac{11}{2} have to be of the opposite signs. Consider the case when x is positive and x-\frac{11}{2} is negative.
x\in \left(0,\frac{11}{2}\right)
The solution satisfying both inequalities is x\in \left(0,\frac{11}{2}\right).
x-\frac{11}{2}>0 x<0
Consider the case when x-\frac{11}{2} is positive and x is negative.
x\in \emptyset
This is false for any x.
x\in \left(0,\frac{11}{2}\right)
The final solution is the union of the obtained solutions.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}