Solve for x (complex solution)
x=\frac{\sqrt{15}i}{18}+\frac{1}{2}\approx 0.5+0.215165741i
x=-\frac{\sqrt{15}i}{18}+\frac{1}{2}\approx 0.5-0.215165741i
Graph
Share
Copied to clipboard
3x^{2}-3x=-\frac{8}{9}
Use the distributive property to multiply 3x by x-1.
3x^{2}-3x+\frac{8}{9}=0
Add \frac{8}{9} to both sides.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 3\times \frac{8}{9}}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -3 for b, and \frac{8}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 3\times \frac{8}{9}}}{2\times 3}
Square -3.
x=\frac{-\left(-3\right)±\sqrt{9-12\times \frac{8}{9}}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-3\right)±\sqrt{9-\frac{32}{3}}}{2\times 3}
Multiply -12 times \frac{8}{9}.
x=\frac{-\left(-3\right)±\sqrt{-\frac{5}{3}}}{2\times 3}
Add 9 to -\frac{32}{3}.
x=\frac{-\left(-3\right)±\frac{\sqrt{15}i}{3}}{2\times 3}
Take the square root of -\frac{5}{3}.
x=\frac{3±\frac{\sqrt{15}i}{3}}{2\times 3}
The opposite of -3 is 3.
x=\frac{3±\frac{\sqrt{15}i}{3}}{6}
Multiply 2 times 3.
x=\frac{\frac{\sqrt{15}i}{3}+3}{6}
Now solve the equation x=\frac{3±\frac{\sqrt{15}i}{3}}{6} when ± is plus. Add 3 to \frac{i\sqrt{15}}{3}.
x=\frac{\sqrt{15}i}{18}+\frac{1}{2}
Divide 3+\frac{i\sqrt{15}}{3} by 6.
x=\frac{-\frac{\sqrt{15}i}{3}+3}{6}
Now solve the equation x=\frac{3±\frac{\sqrt{15}i}{3}}{6} when ± is minus. Subtract \frac{i\sqrt{15}}{3} from 3.
x=-\frac{\sqrt{15}i}{18}+\frac{1}{2}
Divide 3-\frac{i\sqrt{15}}{3} by 6.
x=\frac{\sqrt{15}i}{18}+\frac{1}{2} x=-\frac{\sqrt{15}i}{18}+\frac{1}{2}
The equation is now solved.
3x^{2}-3x=-\frac{8}{9}
Use the distributive property to multiply 3x by x-1.
\frac{3x^{2}-3x}{3}=-\frac{\frac{8}{9}}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{3}{3}\right)x=-\frac{\frac{8}{9}}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-x=-\frac{\frac{8}{9}}{3}
Divide -3 by 3.
x^{2}-x=-\frac{8}{27}
Divide -\frac{8}{9} by 3.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{8}{27}+\left(-\frac{1}{2}\right)^{2}
Divide -1, the coefficient of the x term, by 2 to get -\frac{1}{2}. Then add the square of -\frac{1}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-x+\frac{1}{4}=-\frac{8}{27}+\frac{1}{4}
Square -\frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-x+\frac{1}{4}=-\frac{5}{108}
Add -\frac{8}{27} to \frac{1}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{2}\right)^{2}=-\frac{5}{108}
Factor x^{2}-x+\frac{1}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{-\frac{5}{108}}
Take the square root of both sides of the equation.
x-\frac{1}{2}=\frac{\sqrt{15}i}{18} x-\frac{1}{2}=-\frac{\sqrt{15}i}{18}
Simplify.
x=\frac{\sqrt{15}i}{18}+\frac{1}{2} x=-\frac{\sqrt{15}i}{18}+\frac{1}{2}
Add \frac{1}{2} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}