Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

15x-6x^{2}=100
Use the distributive property to multiply 3x by 5-2x.
15x-6x^{2}-100=0
Subtract 100 from both sides.
-6x^{2}+15x-100=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-15±\sqrt{15^{2}-4\left(-6\right)\left(-100\right)}}{2\left(-6\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -6 for a, 15 for b, and -100 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\left(-6\right)\left(-100\right)}}{2\left(-6\right)}
Square 15.
x=\frac{-15±\sqrt{225+24\left(-100\right)}}{2\left(-6\right)}
Multiply -4 times -6.
x=\frac{-15±\sqrt{225-2400}}{2\left(-6\right)}
Multiply 24 times -100.
x=\frac{-15±\sqrt{-2175}}{2\left(-6\right)}
Add 225 to -2400.
x=\frac{-15±5\sqrt{87}i}{2\left(-6\right)}
Take the square root of -2175.
x=\frac{-15±5\sqrt{87}i}{-12}
Multiply 2 times -6.
x=\frac{-15+5\sqrt{87}i}{-12}
Now solve the equation x=\frac{-15±5\sqrt{87}i}{-12} when ± is plus. Add -15 to 5i\sqrt{87}.
x=-\frac{5\sqrt{87}i}{12}+\frac{5}{4}
Divide -15+5i\sqrt{87} by -12.
x=\frac{-5\sqrt{87}i-15}{-12}
Now solve the equation x=\frac{-15±5\sqrt{87}i}{-12} when ± is minus. Subtract 5i\sqrt{87} from -15.
x=\frac{5\sqrt{87}i}{12}+\frac{5}{4}
Divide -15-5i\sqrt{87} by -12.
x=-\frac{5\sqrt{87}i}{12}+\frac{5}{4} x=\frac{5\sqrt{87}i}{12}+\frac{5}{4}
The equation is now solved.
15x-6x^{2}=100
Use the distributive property to multiply 3x by 5-2x.
-6x^{2}+15x=100
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-6x^{2}+15x}{-6}=\frac{100}{-6}
Divide both sides by -6.
x^{2}+\frac{15}{-6}x=\frac{100}{-6}
Dividing by -6 undoes the multiplication by -6.
x^{2}-\frac{5}{2}x=\frac{100}{-6}
Reduce the fraction \frac{15}{-6} to lowest terms by extracting and canceling out 3.
x^{2}-\frac{5}{2}x=-\frac{50}{3}
Reduce the fraction \frac{100}{-6} to lowest terms by extracting and canceling out 2.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=-\frac{50}{3}+\left(-\frac{5}{4}\right)^{2}
Divide -\frac{5}{2}, the coefficient of the x term, by 2 to get -\frac{5}{4}. Then add the square of -\frac{5}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{5}{2}x+\frac{25}{16}=-\frac{50}{3}+\frac{25}{16}
Square -\frac{5}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{5}{2}x+\frac{25}{16}=-\frac{725}{48}
Add -\frac{50}{3} to \frac{25}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{5}{4}\right)^{2}=-\frac{725}{48}
Factor x^{2}-\frac{5}{2}x+\frac{25}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{-\frac{725}{48}}
Take the square root of both sides of the equation.
x-\frac{5}{4}=\frac{5\sqrt{87}i}{12} x-\frac{5}{4}=-\frac{5\sqrt{87}i}{12}
Simplify.
x=\frac{5\sqrt{87}i}{12}+\frac{5}{4} x=-\frac{5\sqrt{87}i}{12}+\frac{5}{4}
Add \frac{5}{4} to both sides of the equation.