Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-24x+3x^{2}=x^{2}+8
Use the distributive property to multiply 3x by -8+x.
-24x+3x^{2}-x^{2}=8
Subtract x^{2} from both sides.
-24x+2x^{2}=8
Combine 3x^{2} and -x^{2} to get 2x^{2}.
-24x+2x^{2}-8=0
Subtract 8 from both sides.
2x^{2}-24x-8=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}-4\times 2\left(-8\right)}}{2\times 2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 2 for a, -24 for b, and -8 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-24\right)±\sqrt{576-4\times 2\left(-8\right)}}{2\times 2}
Square -24.
x=\frac{-\left(-24\right)±\sqrt{576-8\left(-8\right)}}{2\times 2}
Multiply -4 times 2.
x=\frac{-\left(-24\right)±\sqrt{576+64}}{2\times 2}
Multiply -8 times -8.
x=\frac{-\left(-24\right)±\sqrt{640}}{2\times 2}
Add 576 to 64.
x=\frac{-\left(-24\right)±8\sqrt{10}}{2\times 2}
Take the square root of 640.
x=\frac{24±8\sqrt{10}}{2\times 2}
The opposite of -24 is 24.
x=\frac{24±8\sqrt{10}}{4}
Multiply 2 times 2.
x=\frac{8\sqrt{10}+24}{4}
Now solve the equation x=\frac{24±8\sqrt{10}}{4} when ± is plus. Add 24 to 8\sqrt{10}.
x=2\sqrt{10}+6
Divide 24+8\sqrt{10} by 4.
x=\frac{24-8\sqrt{10}}{4}
Now solve the equation x=\frac{24±8\sqrt{10}}{4} when ± is minus. Subtract 8\sqrt{10} from 24.
x=6-2\sqrt{10}
Divide 24-8\sqrt{10} by 4.
x=2\sqrt{10}+6 x=6-2\sqrt{10}
The equation is now solved.
-24x+3x^{2}=x^{2}+8
Use the distributive property to multiply 3x by -8+x.
-24x+3x^{2}-x^{2}=8
Subtract x^{2} from both sides.
-24x+2x^{2}=8
Combine 3x^{2} and -x^{2} to get 2x^{2}.
2x^{2}-24x=8
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{2x^{2}-24x}{2}=\frac{8}{2}
Divide both sides by 2.
x^{2}+\left(-\frac{24}{2}\right)x=\frac{8}{2}
Dividing by 2 undoes the multiplication by 2.
x^{2}-12x=\frac{8}{2}
Divide -24 by 2.
x^{2}-12x=4
Divide 8 by 2.
x^{2}-12x+\left(-6\right)^{2}=4+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12x+36=4+36
Square -6.
x^{2}-12x+36=40
Add 4 to 36.
\left(x-6\right)^{2}=40
Factor x^{2}-12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{40}
Take the square root of both sides of the equation.
x-6=2\sqrt{10} x-6=-2\sqrt{10}
Simplify.
x=2\sqrt{10}+6 x=6-2\sqrt{10}
Add 6 to both sides of the equation.