Skip to main content
Solve for x (complex solution)
Tick mark Image
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3t^{2}-18t+1=0
Substitute t for x^{4}.
t=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 3\times 1}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 3 for a, -18 for b, and 1 for c in the quadratic formula.
t=\frac{18±2\sqrt{78}}{6}
Do the calculations.
t=\frac{\sqrt{78}}{3}+3 t=-\frac{\sqrt{78}}{3}+3
Solve the equation t=\frac{18±2\sqrt{78}}{6} when ± is plus and when ± is minus.
x=-i\sqrt[4]{\frac{\sqrt{78}}{3}+3} x=-\sqrt[4]{\frac{\sqrt{78}}{3}+3} x=i\sqrt[4]{\frac{\sqrt{78}}{3}+3} x=\sqrt[4]{\frac{\sqrt{78}}{3}+3} x=-i\sqrt[4]{-\frac{\sqrt{78}}{3}+3} x=-\sqrt[4]{-\frac{\sqrt{78}}{3}+3} x=i\sqrt[4]{-\frac{\sqrt{78}}{3}+3} x=\sqrt[4]{-\frac{\sqrt{78}}{3}+3}
Since x=t^{4}, the solutions are obtained by solving the equation for each t.
3t^{2}-18t+1=0
Substitute t for x^{4}.
t=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 3\times 1}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 3 for a, -18 for b, and 1 for c in the quadratic formula.
t=\frac{18±2\sqrt{78}}{6}
Do the calculations.
t=\frac{\sqrt{78}}{3}+3 t=-\frac{\sqrt{78}}{3}+3
Solve the equation t=\frac{18±2\sqrt{78}}{6} when ± is plus and when ± is minus.
x=\frac{\sqrt[4]{27\sqrt{78}+243}}{3} x=-\frac{\sqrt[4]{27\sqrt{78}+243}}{3} x=\frac{\sqrt[4]{243-27\sqrt{78}}}{3} x=-\frac{\sqrt[4]{243-27\sqrt{78}}}{3}
Since x=t^{4}, the solutions are obtained by evaluating x=±\sqrt[4]{t} for positive t.