Factor
\left(x-6\right)\left(3x-1\right)\left(x+1\right)x^{2}
Evaluate
\left(x-6\right)\left(3x-1\right)\left(x+1\right)x^{2}
Graph
Share
Copied to clipboard
x^{2}\left(3x^{3}-16x^{2}-13x+6\right)
Factor out x^{2}.
\left(x+1\right)\left(3x^{2}-19x+6\right)
Consider 3x^{3}-16x^{2}-13x+6. By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term 6 and q divides the leading coefficient 3. One such root is -1. Factor the polynomial by dividing it by x+1.
a+b=-19 ab=3\times 6=18
Consider 3x^{2}-19x+6. Factor the expression by grouping. First, the expression needs to be rewritten as 3x^{2}+ax+bx+6. To find a and b, set up a system to be solved.
-1,-18 -2,-9 -3,-6
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. List all such integer pairs that give product 18.
-1-18=-19 -2-9=-11 -3-6=-9
Calculate the sum for each pair.
a=-18 b=-1
The solution is the pair that gives sum -19.
\left(3x^{2}-18x\right)+\left(-x+6\right)
Rewrite 3x^{2}-19x+6 as \left(3x^{2}-18x\right)+\left(-x+6\right).
3x\left(x-6\right)-\left(x-6\right)
Factor out 3x in the first and -1 in the second group.
\left(x-6\right)\left(3x-1\right)
Factor out common term x-6 by using distributive property.
x^{2}\left(x+1\right)\left(x-6\right)\left(3x-1\right)
Rewrite the complete factored expression.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}