Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

3\left(x^{4}+125xy^{3}\right)
Factor out 3.
x\left(x^{3}+125y^{3}\right)
Consider x^{4}+125xy^{3}. Factor out x.
\left(x+5y\right)\left(x^{2}-5xy+25y^{2}\right)
Consider x^{3}+125y^{3}. Rewrite x^{3}+125y^{3} as x^{3}+\left(5y\right)^{3}. The sum of cubes can be factored using the rule: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
3x\left(x+5y\right)\left(x^{2}-5xy+25y^{2}\right)
Rewrite the complete factored expression.