Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

±\frac{8}{3},±8,±\frac{4}{3},±4,±\frac{2}{3},±2,±\frac{1}{3},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -8 and q divides the leading coefficient 3. List all candidates \frac{p}{q}.
x=-\frac{2}{3}
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
x^{2}-2x-4=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 3x^{3}-4x^{2}-16x-8 by 3\left(x+\frac{2}{3}\right)=3x+2 to get x^{2}-2x-4. Solve the equation where the result equals to 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\left(-4\right)}}{2}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 1 for a, -2 for b, and -4 for c in the quadratic formula.
x=\frac{2±2\sqrt{5}}{2}
Do the calculations.
x=1-\sqrt{5} x=\sqrt{5}+1
Solve the equation x^{2}-2x-4=0 when ± is plus and when ± is minus.
x=-\frac{2}{3} x=1-\sqrt{5} x=\sqrt{5}+1
List all found solutions.