Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{3}+x^{2}-48x-4-12=0
Subtract 12 from both sides.
3x^{3}+x^{2}-48x-16=0
Subtract 12 from -4 to get -16.
±\frac{16}{3},±16,±\frac{8}{3},±8,±\frac{4}{3},±4,±\frac{2}{3},±2,±\frac{1}{3},±1
By Rational Root Theorem, all rational roots of a polynomial are in the form \frac{p}{q}, where p divides the constant term -16 and q divides the leading coefficient 3. List all candidates \frac{p}{q}.
x=4
Find one such root by trying out all the integer values, starting from the smallest by absolute value. If no integer roots are found, try out fractions.
3x^{2}+13x+4=0
By Factor theorem, x-k is a factor of the polynomial for each root k. Divide 3x^{3}+x^{2}-48x-16 by x-4 to get 3x^{2}+13x+4. Solve the equation where the result equals to 0.
x=\frac{-13±\sqrt{13^{2}-4\times 3\times 4}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Substitute 3 for a, 13 for b, and 4 for c in the quadratic formula.
x=\frac{-13±11}{6}
Do the calculations.
x=-4 x=-\frac{1}{3}
Solve the equation 3x^{2}+13x+4=0 when ± is plus and when ± is minus.
x=4 x=-4 x=-\frac{1}{3}
List all found solutions.