Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-6x-3=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 3\left(-3\right)}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 3\left(-3\right)}}{2\times 3}
Square -6.
x=\frac{-\left(-6\right)±\sqrt{36-12\left(-3\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-6\right)±\sqrt{36+36}}{2\times 3}
Multiply -12 times -3.
x=\frac{-\left(-6\right)±\sqrt{72}}{2\times 3}
Add 36 to 36.
x=\frac{-\left(-6\right)±6\sqrt{2}}{2\times 3}
Take the square root of 72.
x=\frac{6±6\sqrt{2}}{2\times 3}
The opposite of -6 is 6.
x=\frac{6±6\sqrt{2}}{6}
Multiply 2 times 3.
x=\frac{6\sqrt{2}+6}{6}
Now solve the equation x=\frac{6±6\sqrt{2}}{6} when ± is plus. Add 6 to 6\sqrt{2}.
x=\sqrt{2}+1
Divide 6+6\sqrt{2} by 6.
x=\frac{6-6\sqrt{2}}{6}
Now solve the equation x=\frac{6±6\sqrt{2}}{6} when ± is minus. Subtract 6\sqrt{2} from 6.
x=1-\sqrt{2}
Divide 6-6\sqrt{2} by 6.
3x^{2}-6x-3=3\left(x-\left(\sqrt{2}+1\right)\right)\left(x-\left(1-\sqrt{2}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 1+\sqrt{2} for x_{1} and 1-\sqrt{2} for x_{2}.
x ^ 2 -2x -1 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 3
r + s = 2 rs = -1
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 1 - u s = 1 + u
Two numbers r and s sum up to 2 exactly when the average of the two numbers is \frac{1}{2}*2 = 1. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(1 - u) (1 + u) = -1
To solve for unknown quantity u, substitute these in the product equation rs = -1
1 - u^2 = -1
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = -1-1 = -2
Simplify the expression by subtracting 1 on both sides
u^2 = 2 u = \pm\sqrt{2} = \pm \sqrt{2}
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =1 - \sqrt{2} = -0.414 s = 1 + \sqrt{2} = 2.414
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.