Solve for x
x = \frac{5 \sqrt{33} - 25}{2} \approx 1.861406616
x=\frac{-5\sqrt{33}-25}{2}\approx -26.861406616
Graph
Share
Copied to clipboard
-3x^{2}-75x+150=0
Combine 3x^{2} and -6x^{2} to get -3x^{2}.
x=\frac{-\left(-75\right)±\sqrt{\left(-75\right)^{2}-4\left(-3\right)\times 150}}{2\left(-3\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -3 for a, -75 for b, and 150 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-75\right)±\sqrt{5625-4\left(-3\right)\times 150}}{2\left(-3\right)}
Square -75.
x=\frac{-\left(-75\right)±\sqrt{5625+12\times 150}}{2\left(-3\right)}
Multiply -4 times -3.
x=\frac{-\left(-75\right)±\sqrt{5625+1800}}{2\left(-3\right)}
Multiply 12 times 150.
x=\frac{-\left(-75\right)±\sqrt{7425}}{2\left(-3\right)}
Add 5625 to 1800.
x=\frac{-\left(-75\right)±15\sqrt{33}}{2\left(-3\right)}
Take the square root of 7425.
x=\frac{75±15\sqrt{33}}{2\left(-3\right)}
The opposite of -75 is 75.
x=\frac{75±15\sqrt{33}}{-6}
Multiply 2 times -3.
x=\frac{15\sqrt{33}+75}{-6}
Now solve the equation x=\frac{75±15\sqrt{33}}{-6} when ± is plus. Add 75 to 15\sqrt{33}.
x=\frac{-5\sqrt{33}-25}{2}
Divide 75+15\sqrt{33} by -6.
x=\frac{75-15\sqrt{33}}{-6}
Now solve the equation x=\frac{75±15\sqrt{33}}{-6} when ± is minus. Subtract 15\sqrt{33} from 75.
x=\frac{5\sqrt{33}-25}{2}
Divide 75-15\sqrt{33} by -6.
x=\frac{-5\sqrt{33}-25}{2} x=\frac{5\sqrt{33}-25}{2}
The equation is now solved.
-3x^{2}-75x+150=0
Combine 3x^{2} and -6x^{2} to get -3x^{2}.
-3x^{2}-75x=-150
Subtract 150 from both sides. Anything subtracted from zero gives its negation.
\frac{-3x^{2}-75x}{-3}=-\frac{150}{-3}
Divide both sides by -3.
x^{2}+\left(-\frac{75}{-3}\right)x=-\frac{150}{-3}
Dividing by -3 undoes the multiplication by -3.
x^{2}+25x=-\frac{150}{-3}
Divide -75 by -3.
x^{2}+25x=50
Divide -150 by -3.
x^{2}+25x+\left(\frac{25}{2}\right)^{2}=50+\left(\frac{25}{2}\right)^{2}
Divide 25, the coefficient of the x term, by 2 to get \frac{25}{2}. Then add the square of \frac{25}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+25x+\frac{625}{4}=50+\frac{625}{4}
Square \frac{25}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+25x+\frac{625}{4}=\frac{825}{4}
Add 50 to \frac{625}{4}.
\left(x+\frac{25}{2}\right)^{2}=\frac{825}{4}
Factor x^{2}+25x+\frac{625}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{25}{2}\right)^{2}}=\sqrt{\frac{825}{4}}
Take the square root of both sides of the equation.
x+\frac{25}{2}=\frac{5\sqrt{33}}{2} x+\frac{25}{2}=-\frac{5\sqrt{33}}{2}
Simplify.
x=\frac{5\sqrt{33}-25}{2} x=\frac{-5\sqrt{33}-25}{2}
Subtract \frac{25}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}