Solve for x
x = -\frac{14}{3} = -4\frac{2}{3} \approx -4.666666667
x=4
Graph
Share
Copied to clipboard
3x^{2}-56+2x=0
Add 2x to both sides.
3x^{2}+2x-56=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=2 ab=3\left(-56\right)=-168
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-56. To find a and b, set up a system to be solved.
-1,168 -2,84 -3,56 -4,42 -6,28 -7,24 -8,21 -12,14
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -168.
-1+168=167 -2+84=82 -3+56=53 -4+42=38 -6+28=22 -7+24=17 -8+21=13 -12+14=2
Calculate the sum for each pair.
a=-12 b=14
The solution is the pair that gives sum 2.
\left(3x^{2}-12x\right)+\left(14x-56\right)
Rewrite 3x^{2}+2x-56 as \left(3x^{2}-12x\right)+\left(14x-56\right).
3x\left(x-4\right)+14\left(x-4\right)
Factor out 3x in the first and 14 in the second group.
\left(x-4\right)\left(3x+14\right)
Factor out common term x-4 by using distributive property.
x=4 x=-\frac{14}{3}
To find equation solutions, solve x-4=0 and 3x+14=0.
3x^{2}-56+2x=0
Add 2x to both sides.
3x^{2}+2x-56=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-2±\sqrt{2^{2}-4\times 3\left(-56\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 2 for b, and -56 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-2±\sqrt{4-4\times 3\left(-56\right)}}{2\times 3}
Square 2.
x=\frac{-2±\sqrt{4-12\left(-56\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-2±\sqrt{4+672}}{2\times 3}
Multiply -12 times -56.
x=\frac{-2±\sqrt{676}}{2\times 3}
Add 4 to 672.
x=\frac{-2±26}{2\times 3}
Take the square root of 676.
x=\frac{-2±26}{6}
Multiply 2 times 3.
x=\frac{24}{6}
Now solve the equation x=\frac{-2±26}{6} when ± is plus. Add -2 to 26.
x=4
Divide 24 by 6.
x=-\frac{28}{6}
Now solve the equation x=\frac{-2±26}{6} when ± is minus. Subtract 26 from -2.
x=-\frac{14}{3}
Reduce the fraction \frac{-28}{6} to lowest terms by extracting and canceling out 2.
x=4 x=-\frac{14}{3}
The equation is now solved.
3x^{2}-56+2x=0
Add 2x to both sides.
3x^{2}+2x=56
Add 56 to both sides. Anything plus zero gives itself.
\frac{3x^{2}+2x}{3}=\frac{56}{3}
Divide both sides by 3.
x^{2}+\frac{2}{3}x=\frac{56}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{2}{3}x+\left(\frac{1}{3}\right)^{2}=\frac{56}{3}+\left(\frac{1}{3}\right)^{2}
Divide \frac{2}{3}, the coefficient of the x term, by 2 to get \frac{1}{3}. Then add the square of \frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{56}{3}+\frac{1}{9}
Square \frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{2}{3}x+\frac{1}{9}=\frac{169}{9}
Add \frac{56}{3} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{3}\right)^{2}=\frac{169}{9}
Factor x^{2}+\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{3}\right)^{2}}=\sqrt{\frac{169}{9}}
Take the square root of both sides of the equation.
x+\frac{1}{3}=\frac{13}{3} x+\frac{1}{3}=-\frac{13}{3}
Simplify.
x=4 x=-\frac{14}{3}
Subtract \frac{1}{3} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}