Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-54x=-204
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3x^{2}-54x-\left(-204\right)=-204-\left(-204\right)
Add 204 to both sides of the equation.
3x^{2}-54x-\left(-204\right)=0
Subtracting -204 from itself leaves 0.
3x^{2}-54x+204=0
Subtract -204 from 0.
x=\frac{-\left(-54\right)±\sqrt{\left(-54\right)^{2}-4\times 3\times 204}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -54 for b, and 204 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-54\right)±\sqrt{2916-4\times 3\times 204}}{2\times 3}
Square -54.
x=\frac{-\left(-54\right)±\sqrt{2916-12\times 204}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-54\right)±\sqrt{2916-2448}}{2\times 3}
Multiply -12 times 204.
x=\frac{-\left(-54\right)±\sqrt{468}}{2\times 3}
Add 2916 to -2448.
x=\frac{-\left(-54\right)±6\sqrt{13}}{2\times 3}
Take the square root of 468.
x=\frac{54±6\sqrt{13}}{2\times 3}
The opposite of -54 is 54.
x=\frac{54±6\sqrt{13}}{6}
Multiply 2 times 3.
x=\frac{6\sqrt{13}+54}{6}
Now solve the equation x=\frac{54±6\sqrt{13}}{6} when ± is plus. Add 54 to 6\sqrt{13}.
x=\sqrt{13}+9
Divide 54+6\sqrt{13} by 6.
x=\frac{54-6\sqrt{13}}{6}
Now solve the equation x=\frac{54±6\sqrt{13}}{6} when ± is minus. Subtract 6\sqrt{13} from 54.
x=9-\sqrt{13}
Divide 54-6\sqrt{13} by 6.
x=\sqrt{13}+9 x=9-\sqrt{13}
The equation is now solved.
3x^{2}-54x=-204
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{3x^{2}-54x}{3}=-\frac{204}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{54}{3}\right)x=-\frac{204}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-18x=-\frac{204}{3}
Divide -54 by 3.
x^{2}-18x=-68
Divide -204 by 3.
x^{2}-18x+\left(-9\right)^{2}=-68+\left(-9\right)^{2}
Divide -18, the coefficient of the x term, by 2 to get -9. Then add the square of -9 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-18x+81=-68+81
Square -9.
x^{2}-18x+81=13
Add -68 to 81.
\left(x-9\right)^{2}=13
Factor x^{2}-18x+81. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-9\right)^{2}}=\sqrt{13}
Take the square root of both sides of the equation.
x-9=\sqrt{13} x-9=-\sqrt{13}
Simplify.
x=\sqrt{13}+9 x=9-\sqrt{13}
Add 9 to both sides of the equation.