Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-5x-2x^{2}=4x+10
Subtract 2x^{2} from both sides.
x^{2}-5x=4x+10
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-5x-4x=10
Subtract 4x from both sides.
x^{2}-9x=10
Combine -5x and -4x to get -9x.
x^{2}-9x-10=0
Subtract 10 from both sides.
a+b=-9 ab=-10
To solve the equation, factor x^{2}-9x-10 using formula x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right). To find a and b, set up a system to be solved.
1,-10 2,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -10.
1-10=-9 2-5=-3
Calculate the sum for each pair.
a=-10 b=1
The solution is the pair that gives sum -9.
\left(x-10\right)\left(x+1\right)
Rewrite factored expression \left(x+a\right)\left(x+b\right) using the obtained values.
x=10 x=-1
To find equation solutions, solve x-10=0 and x+1=0.
3x^{2}-5x-2x^{2}=4x+10
Subtract 2x^{2} from both sides.
x^{2}-5x=4x+10
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-5x-4x=10
Subtract 4x from both sides.
x^{2}-9x=10
Combine -5x and -4x to get -9x.
x^{2}-9x-10=0
Subtract 10 from both sides.
a+b=-9 ab=1\left(-10\right)=-10
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-10. To find a and b, set up a system to be solved.
1,-10 2,-5
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -10.
1-10=-9 2-5=-3
Calculate the sum for each pair.
a=-10 b=1
The solution is the pair that gives sum -9.
\left(x^{2}-10x\right)+\left(x-10\right)
Rewrite x^{2}-9x-10 as \left(x^{2}-10x\right)+\left(x-10\right).
x\left(x-10\right)+x-10
Factor out x in x^{2}-10x.
\left(x-10\right)\left(x+1\right)
Factor out common term x-10 by using distributive property.
x=10 x=-1
To find equation solutions, solve x-10=0 and x+1=0.
3x^{2}-5x-2x^{2}=4x+10
Subtract 2x^{2} from both sides.
x^{2}-5x=4x+10
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-5x-4x=10
Subtract 4x from both sides.
x^{2}-9x=10
Combine -5x and -4x to get -9x.
x^{2}-9x-10=0
Subtract 10 from both sides.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\left(-10\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, -9 for b, and -10 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-9\right)±\sqrt{81-4\left(-10\right)}}{2}
Square -9.
x=\frac{-\left(-9\right)±\sqrt{81+40}}{2}
Multiply -4 times -10.
x=\frac{-\left(-9\right)±\sqrt{121}}{2}
Add 81 to 40.
x=\frac{-\left(-9\right)±11}{2}
Take the square root of 121.
x=\frac{9±11}{2}
The opposite of -9 is 9.
x=\frac{20}{2}
Now solve the equation x=\frac{9±11}{2} when ± is plus. Add 9 to 11.
x=10
Divide 20 by 2.
x=-\frac{2}{2}
Now solve the equation x=\frac{9±11}{2} when ± is minus. Subtract 11 from 9.
x=-1
Divide -2 by 2.
x=10 x=-1
The equation is now solved.
3x^{2}-5x-2x^{2}=4x+10
Subtract 2x^{2} from both sides.
x^{2}-5x=4x+10
Combine 3x^{2} and -2x^{2} to get x^{2}.
x^{2}-5x-4x=10
Subtract 4x from both sides.
x^{2}-9x=10
Combine -5x and -4x to get -9x.
x^{2}-9x+\left(-\frac{9}{2}\right)^{2}=10+\left(-\frac{9}{2}\right)^{2}
Divide -9, the coefficient of the x term, by 2 to get -\frac{9}{2}. Then add the square of -\frac{9}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-9x+\frac{81}{4}=10+\frac{81}{4}
Square -\frac{9}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}-9x+\frac{81}{4}=\frac{121}{4}
Add 10 to \frac{81}{4}.
\left(x-\frac{9}{2}\right)^{2}=\frac{121}{4}
Factor x^{2}-9x+\frac{81}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Take the square root of both sides of the equation.
x-\frac{9}{2}=\frac{11}{2} x-\frac{9}{2}=-\frac{11}{2}
Simplify.
x=10 x=-1
Add \frac{9}{2} to both sides of the equation.