Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

6x^{2}-8x+10\left(x^{2}-2\right)=3x\left(x-2\right)+28
Multiply both sides of the equation by 2.
6x^{2}-8x+10x^{2}-20=3x\left(x-2\right)+28
Use the distributive property to multiply 10 by x^{2}-2.
16x^{2}-8x-20=3x\left(x-2\right)+28
Combine 6x^{2} and 10x^{2} to get 16x^{2}.
16x^{2}-8x-20=3x^{2}-6x+28
Use the distributive property to multiply 3x by x-2.
16x^{2}-8x-20-3x^{2}=-6x+28
Subtract 3x^{2} from both sides.
13x^{2}-8x-20=-6x+28
Combine 16x^{2} and -3x^{2} to get 13x^{2}.
13x^{2}-8x-20+6x=28
Add 6x to both sides.
13x^{2}-2x-20=28
Combine -8x and 6x to get -2x.
13x^{2}-2x-20-28=0
Subtract 28 from both sides.
13x^{2}-2x-48=0
Subtract 28 from -20 to get -48.
a+b=-2 ab=13\left(-48\right)=-624
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 13x^{2}+ax+bx-48. To find a and b, set up a system to be solved.
1,-624 2,-312 3,-208 4,-156 6,-104 8,-78 12,-52 13,-48 16,-39 24,-26
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -624.
1-624=-623 2-312=-310 3-208=-205 4-156=-152 6-104=-98 8-78=-70 12-52=-40 13-48=-35 16-39=-23 24-26=-2
Calculate the sum for each pair.
a=-26 b=24
The solution is the pair that gives sum -2.
\left(13x^{2}-26x\right)+\left(24x-48\right)
Rewrite 13x^{2}-2x-48 as \left(13x^{2}-26x\right)+\left(24x-48\right).
13x\left(x-2\right)+24\left(x-2\right)
Factor out 13x in the first and 24 in the second group.
\left(x-2\right)\left(13x+24\right)
Factor out common term x-2 by using distributive property.
x=2 x=-\frac{24}{13}
To find equation solutions, solve x-2=0 and 13x+24=0.
6x^{2}-8x+10\left(x^{2}-2\right)=3x\left(x-2\right)+28
Multiply both sides of the equation by 2.
6x^{2}-8x+10x^{2}-20=3x\left(x-2\right)+28
Use the distributive property to multiply 10 by x^{2}-2.
16x^{2}-8x-20=3x\left(x-2\right)+28
Combine 6x^{2} and 10x^{2} to get 16x^{2}.
16x^{2}-8x-20=3x^{2}-6x+28
Use the distributive property to multiply 3x by x-2.
16x^{2}-8x-20-3x^{2}=-6x+28
Subtract 3x^{2} from both sides.
13x^{2}-8x-20=-6x+28
Combine 16x^{2} and -3x^{2} to get 13x^{2}.
13x^{2}-8x-20+6x=28
Add 6x to both sides.
13x^{2}-2x-20=28
Combine -8x and 6x to get -2x.
13x^{2}-2x-20-28=0
Subtract 28 from both sides.
13x^{2}-2x-48=0
Subtract 28 from -20 to get -48.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 13\left(-48\right)}}{2\times 13}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 13 for a, -2 for b, and -48 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 13\left(-48\right)}}{2\times 13}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-52\left(-48\right)}}{2\times 13}
Multiply -4 times 13.
x=\frac{-\left(-2\right)±\sqrt{4+2496}}{2\times 13}
Multiply -52 times -48.
x=\frac{-\left(-2\right)±\sqrt{2500}}{2\times 13}
Add 4 to 2496.
x=\frac{-\left(-2\right)±50}{2\times 13}
Take the square root of 2500.
x=\frac{2±50}{2\times 13}
The opposite of -2 is 2.
x=\frac{2±50}{26}
Multiply 2 times 13.
x=\frac{52}{26}
Now solve the equation x=\frac{2±50}{26} when ± is plus. Add 2 to 50.
x=2
Divide 52 by 26.
x=-\frac{48}{26}
Now solve the equation x=\frac{2±50}{26} when ± is minus. Subtract 50 from 2.
x=-\frac{24}{13}
Reduce the fraction \frac{-48}{26} to lowest terms by extracting and canceling out 2.
x=2 x=-\frac{24}{13}
The equation is now solved.
6x^{2}-8x+10\left(x^{2}-2\right)=3x\left(x-2\right)+28
Multiply both sides of the equation by 2.
6x^{2}-8x+10x^{2}-20=3x\left(x-2\right)+28
Use the distributive property to multiply 10 by x^{2}-2.
16x^{2}-8x-20=3x\left(x-2\right)+28
Combine 6x^{2} and 10x^{2} to get 16x^{2}.
16x^{2}-8x-20=3x^{2}-6x+28
Use the distributive property to multiply 3x by x-2.
16x^{2}-8x-20-3x^{2}=-6x+28
Subtract 3x^{2} from both sides.
13x^{2}-8x-20=-6x+28
Combine 16x^{2} and -3x^{2} to get 13x^{2}.
13x^{2}-8x-20+6x=28
Add 6x to both sides.
13x^{2}-2x-20=28
Combine -8x and 6x to get -2x.
13x^{2}-2x=28+20
Add 20 to both sides.
13x^{2}-2x=48
Add 28 and 20 to get 48.
\frac{13x^{2}-2x}{13}=\frac{48}{13}
Divide both sides by 13.
x^{2}-\frac{2}{13}x=\frac{48}{13}
Dividing by 13 undoes the multiplication by 13.
x^{2}-\frac{2}{13}x+\left(-\frac{1}{13}\right)^{2}=\frac{48}{13}+\left(-\frac{1}{13}\right)^{2}
Divide -\frac{2}{13}, the coefficient of the x term, by 2 to get -\frac{1}{13}. Then add the square of -\frac{1}{13} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{13}x+\frac{1}{169}=\frac{48}{13}+\frac{1}{169}
Square -\frac{1}{13} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{13}x+\frac{1}{169}=\frac{625}{169}
Add \frac{48}{13} to \frac{1}{169} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{13}\right)^{2}=\frac{625}{169}
Factor x^{2}-\frac{2}{13}x+\frac{1}{169}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{13}\right)^{2}}=\sqrt{\frac{625}{169}}
Take the square root of both sides of the equation.
x-\frac{1}{13}=\frac{25}{13} x-\frac{1}{13}=-\frac{25}{13}
Simplify.
x=2 x=-\frac{24}{13}
Add \frac{1}{13} to both sides of the equation.