Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-3x\left(4x+6\right)+16x^{2}+48x+36=12
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4x+6\right)^{2}.
3x^{2}-3x\left(4x+6\right)+16x^{2}+48x+36-12=0
Subtract 12 from both sides.
3x^{2}-3x\left(4x+6\right)+16x^{2}+48x+24=0
Subtract 12 from 36 to get 24.
3x^{2}-12x^{2}-18x+16x^{2}+48x+24=0
Use the distributive property to multiply -3x by 4x+6.
-9x^{2}-18x+16x^{2}+48x+24=0
Combine 3x^{2} and -12x^{2} to get -9x^{2}.
7x^{2}-18x+48x+24=0
Combine -9x^{2} and 16x^{2} to get 7x^{2}.
7x^{2}+30x+24=0
Combine -18x and 48x to get 30x.
x=\frac{-30±\sqrt{30^{2}-4\times 7\times 24}}{2\times 7}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 7 for a, 30 for b, and 24 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-30±\sqrt{900-4\times 7\times 24}}{2\times 7}
Square 30.
x=\frac{-30±\sqrt{900-28\times 24}}{2\times 7}
Multiply -4 times 7.
x=\frac{-30±\sqrt{900-672}}{2\times 7}
Multiply -28 times 24.
x=\frac{-30±\sqrt{228}}{2\times 7}
Add 900 to -672.
x=\frac{-30±2\sqrt{57}}{2\times 7}
Take the square root of 228.
x=\frac{-30±2\sqrt{57}}{14}
Multiply 2 times 7.
x=\frac{2\sqrt{57}-30}{14}
Now solve the equation x=\frac{-30±2\sqrt{57}}{14} when ± is plus. Add -30 to 2\sqrt{57}.
x=\frac{\sqrt{57}-15}{7}
Divide -30+2\sqrt{57} by 14.
x=\frac{-2\sqrt{57}-30}{14}
Now solve the equation x=\frac{-30±2\sqrt{57}}{14} when ± is minus. Subtract 2\sqrt{57} from -30.
x=\frac{-\sqrt{57}-15}{7}
Divide -30-2\sqrt{57} by 14.
x=\frac{\sqrt{57}-15}{7} x=\frac{-\sqrt{57}-15}{7}
The equation is now solved.
3x^{2}-3x\left(4x+6\right)+16x^{2}+48x+36=12
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(4x+6\right)^{2}.
3x^{2}-3x\left(4x+6\right)+16x^{2}+48x=12-36
Subtract 36 from both sides.
3x^{2}-3x\left(4x+6\right)+16x^{2}+48x=-24
Subtract 36 from 12 to get -24.
3x^{2}-12x^{2}-18x+16x^{2}+48x=-24
Use the distributive property to multiply -3x by 4x+6.
-9x^{2}-18x+16x^{2}+48x=-24
Combine 3x^{2} and -12x^{2} to get -9x^{2}.
7x^{2}-18x+48x=-24
Combine -9x^{2} and 16x^{2} to get 7x^{2}.
7x^{2}+30x=-24
Combine -18x and 48x to get 30x.
\frac{7x^{2}+30x}{7}=-\frac{24}{7}
Divide both sides by 7.
x^{2}+\frac{30}{7}x=-\frac{24}{7}
Dividing by 7 undoes the multiplication by 7.
x^{2}+\frac{30}{7}x+\left(\frac{15}{7}\right)^{2}=-\frac{24}{7}+\left(\frac{15}{7}\right)^{2}
Divide \frac{30}{7}, the coefficient of the x term, by 2 to get \frac{15}{7}. Then add the square of \frac{15}{7} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{30}{7}x+\frac{225}{49}=-\frac{24}{7}+\frac{225}{49}
Square \frac{15}{7} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{30}{7}x+\frac{225}{49}=\frac{57}{49}
Add -\frac{24}{7} to \frac{225}{49} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{15}{7}\right)^{2}=\frac{57}{49}
Factor x^{2}+\frac{30}{7}x+\frac{225}{49}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{15}{7}\right)^{2}}=\sqrt{\frac{57}{49}}
Take the square root of both sides of the equation.
x+\frac{15}{7}=\frac{\sqrt{57}}{7} x+\frac{15}{7}=-\frac{\sqrt{57}}{7}
Simplify.
x=\frac{\sqrt{57}-15}{7} x=\frac{-\sqrt{57}-15}{7}
Subtract \frac{15}{7} from both sides of the equation.