Solve for a (complex solution)
\left\{\begin{matrix}\\a=-x\text{, }&\text{unconditionally}\\a\in \mathrm{C}\text{, }&x=b\end{matrix}\right.
Solve for b (complex solution)
\left\{\begin{matrix}\\b=x\text{, }&\text{unconditionally}\\b\in \mathrm{C}\text{, }&x=-a\end{matrix}\right.
Solve for a
\left\{\begin{matrix}\\a=-x\text{, }&\text{unconditionally}\\a\in \mathrm{R}\text{, }&x=b\end{matrix}\right.
Solve for b
\left\{\begin{matrix}\\b=x\text{, }&\text{unconditionally}\\b\in \mathrm{R}\text{, }&x=-a\end{matrix}\right.
Graph
Share
Copied to clipboard
3x^{2}-3ab+3ax=3bx
Add 3ax to both sides.
-3ab+3ax=3bx-3x^{2}
Subtract 3x^{2} from both sides.
\left(-3b+3x\right)a=3bx-3x^{2}
Combine all terms containing a.
\left(3x-3b\right)a=3bx-3x^{2}
The equation is in standard form.
\frac{\left(3x-3b\right)a}{3x-3b}=\frac{3x\left(b-x\right)}{3x-3b}
Divide both sides by -3b+3x.
a=\frac{3x\left(b-x\right)}{3x-3b}
Dividing by -3b+3x undoes the multiplication by -3b+3x.
a=-x
Divide 3x\left(b-x\right) by -3b+3x.
3x^{2}-3ab-3bx=-3ax
Subtract 3bx from both sides.
-3ab-3bx=-3ax-3x^{2}
Subtract 3x^{2} from both sides.
\left(-3a-3x\right)b=-3ax-3x^{2}
Combine all terms containing b.
\left(-3x-3a\right)b=-3x^{2}-3ax
The equation is in standard form.
\frac{\left(-3x-3a\right)b}{-3x-3a}=-\frac{3x\left(x+a\right)}{-3x-3a}
Divide both sides by -3a-3x.
b=-\frac{3x\left(x+a\right)}{-3x-3a}
Dividing by -3a-3x undoes the multiplication by -3a-3x.
b=x
Divide -3x\left(a+x\right) by -3a-3x.
3x^{2}-3ab+3ax=3bx
Add 3ax to both sides.
-3ab+3ax=3bx-3x^{2}
Subtract 3x^{2} from both sides.
\left(-3b+3x\right)a=3bx-3x^{2}
Combine all terms containing a.
\left(3x-3b\right)a=3bx-3x^{2}
The equation is in standard form.
\frac{\left(3x-3b\right)a}{3x-3b}=\frac{3x\left(b-x\right)}{3x-3b}
Divide both sides by -3b+3x.
a=\frac{3x\left(b-x\right)}{3x-3b}
Dividing by -3b+3x undoes the multiplication by -3b+3x.
a=-x
Divide 3x\left(b-x\right) by -3b+3x.
3x^{2}-3ab-3bx=-3ax
Subtract 3bx from both sides.
-3ab-3bx=-3ax-3x^{2}
Subtract 3x^{2} from both sides.
\left(-3a-3x\right)b=-3ax-3x^{2}
Combine all terms containing b.
\left(-3x-3a\right)b=-3x^{2}-3ax
The equation is in standard form.
\frac{\left(-3x-3a\right)b}{-3x-3a}=-\frac{3x\left(x+a\right)}{-3x-3a}
Divide both sides by -3a-3x.
b=-\frac{3x\left(x+a\right)}{-3x-3a}
Dividing by -3a-3x undoes the multiplication by -3a-3x.
b=x
Divide -3x\left(a+x\right) by -3a-3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}