Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-2x+18=1
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3x^{2}-2x+18-1=1-1
Subtract 1 from both sides of the equation.
3x^{2}-2x+18-1=0
Subtracting 1 from itself leaves 0.
3x^{2}-2x+17=0
Subtract 1 from 18.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 3\times 17}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -2 for b, and 17 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 3\times 17}}{2\times 3}
Square -2.
x=\frac{-\left(-2\right)±\sqrt{4-12\times 17}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-2\right)±\sqrt{4-204}}{2\times 3}
Multiply -12 times 17.
x=\frac{-\left(-2\right)±\sqrt{-200}}{2\times 3}
Add 4 to -204.
x=\frac{-\left(-2\right)±10\sqrt{2}i}{2\times 3}
Take the square root of -200.
x=\frac{2±10\sqrt{2}i}{2\times 3}
The opposite of -2 is 2.
x=\frac{2±10\sqrt{2}i}{6}
Multiply 2 times 3.
x=\frac{2+10\sqrt{2}i}{6}
Now solve the equation x=\frac{2±10\sqrt{2}i}{6} when ± is plus. Add 2 to 10i\sqrt{2}.
x=\frac{1+5\sqrt{2}i}{3}
Divide 2+10i\sqrt{2} by 6.
x=\frac{-10\sqrt{2}i+2}{6}
Now solve the equation x=\frac{2±10\sqrt{2}i}{6} when ± is minus. Subtract 10i\sqrt{2} from 2.
x=\frac{-5\sqrt{2}i+1}{3}
Divide 2-10i\sqrt{2} by 6.
x=\frac{1+5\sqrt{2}i}{3} x=\frac{-5\sqrt{2}i+1}{3}
The equation is now solved.
3x^{2}-2x+18=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}-2x+18-18=1-18
Subtract 18 from both sides of the equation.
3x^{2}-2x=1-18
Subtracting 18 from itself leaves 0.
3x^{2}-2x=-17
Subtract 18 from 1.
\frac{3x^{2}-2x}{3}=-\frac{17}{3}
Divide both sides by 3.
x^{2}-\frac{2}{3}x=-\frac{17}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{2}{3}x+\left(-\frac{1}{3}\right)^{2}=-\frac{17}{3}+\left(-\frac{1}{3}\right)^{2}
Divide -\frac{2}{3}, the coefficient of the x term, by 2 to get -\frac{1}{3}. Then add the square of -\frac{1}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{17}{3}+\frac{1}{9}
Square -\frac{1}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{2}{3}x+\frac{1}{9}=-\frac{50}{9}
Add -\frac{17}{3} to \frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{1}{3}\right)^{2}=-\frac{50}{9}
Factor x^{2}-\frac{2}{3}x+\frac{1}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{3}\right)^{2}}=\sqrt{-\frac{50}{9}}
Take the square root of both sides of the equation.
x-\frac{1}{3}=\frac{5\sqrt{2}i}{3} x-\frac{1}{3}=-\frac{5\sqrt{2}i}{3}
Simplify.
x=\frac{1+5\sqrt{2}i}{3} x=\frac{-5\sqrt{2}i+1}{3}
Add \frac{1}{3} to both sides of the equation.