Solve for x
x=\sqrt{23}+3\approx 7.795831523
x=3-\sqrt{23}\approx -1.795831523
Graph
Share
Copied to clipboard
3x^{2}-18x+5=47
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3x^{2}-18x+5-47=47-47
Subtract 47 from both sides of the equation.
3x^{2}-18x+5-47=0
Subtracting 47 from itself leaves 0.
3x^{2}-18x-42=0
Subtract 47 from 5.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 3\left(-42\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -18 for b, and -42 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 3\left(-42\right)}}{2\times 3}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-12\left(-42\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-18\right)±\sqrt{324+504}}{2\times 3}
Multiply -12 times -42.
x=\frac{-\left(-18\right)±\sqrt{828}}{2\times 3}
Add 324 to 504.
x=\frac{-\left(-18\right)±6\sqrt{23}}{2\times 3}
Take the square root of 828.
x=\frac{18±6\sqrt{23}}{2\times 3}
The opposite of -18 is 18.
x=\frac{18±6\sqrt{23}}{6}
Multiply 2 times 3.
x=\frac{6\sqrt{23}+18}{6}
Now solve the equation x=\frac{18±6\sqrt{23}}{6} when ± is plus. Add 18 to 6\sqrt{23}.
x=\sqrt{23}+3
Divide 18+6\sqrt{23} by 6.
x=\frac{18-6\sqrt{23}}{6}
Now solve the equation x=\frac{18±6\sqrt{23}}{6} when ± is minus. Subtract 6\sqrt{23} from 18.
x=3-\sqrt{23}
Divide 18-6\sqrt{23} by 6.
x=\sqrt{23}+3 x=3-\sqrt{23}
The equation is now solved.
3x^{2}-18x+5=47
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}-18x+5-5=47-5
Subtract 5 from both sides of the equation.
3x^{2}-18x=47-5
Subtracting 5 from itself leaves 0.
3x^{2}-18x=42
Subtract 5 from 47.
\frac{3x^{2}-18x}{3}=\frac{42}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{18}{3}\right)x=\frac{42}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-6x=\frac{42}{3}
Divide -18 by 3.
x^{2}-6x=14
Divide 42 by 3.
x^{2}-6x+\left(-3\right)^{2}=14+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=14+9
Square -3.
x^{2}-6x+9=23
Add 14 to 9.
\left(x-3\right)^{2}=23
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{23}
Take the square root of both sides of the equation.
x-3=\sqrt{23} x-3=-\sqrt{23}
Simplify.
x=\sqrt{23}+3 x=3-\sqrt{23}
Add 3 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}