Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-18x+225=6
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3x^{2}-18x+225-6=6-6
Subtract 6 from both sides of the equation.
3x^{2}-18x+225-6=0
Subtracting 6 from itself leaves 0.
3x^{2}-18x+219=0
Subtract 6 from 225.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 3\times 219}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -18 for b, and 219 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 3\times 219}}{2\times 3}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-12\times 219}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-18\right)±\sqrt{324-2628}}{2\times 3}
Multiply -12 times 219.
x=\frac{-\left(-18\right)±\sqrt{-2304}}{2\times 3}
Add 324 to -2628.
x=\frac{-\left(-18\right)±48i}{2\times 3}
Take the square root of -2304.
x=\frac{18±48i}{2\times 3}
The opposite of -18 is 18.
x=\frac{18±48i}{6}
Multiply 2 times 3.
x=\frac{18+48i}{6}
Now solve the equation x=\frac{18±48i}{6} when ± is plus. Add 18 to 48i.
x=3+8i
Divide 18+48i by 6.
x=\frac{18-48i}{6}
Now solve the equation x=\frac{18±48i}{6} when ± is minus. Subtract 48i from 18.
x=3-8i
Divide 18-48i by 6.
x=3+8i x=3-8i
The equation is now solved.
3x^{2}-18x+225=6
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}-18x+225-225=6-225
Subtract 225 from both sides of the equation.
3x^{2}-18x=6-225
Subtracting 225 from itself leaves 0.
3x^{2}-18x=-219
Subtract 225 from 6.
\frac{3x^{2}-18x}{3}=-\frac{219}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{18}{3}\right)x=-\frac{219}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-6x=-\frac{219}{3}
Divide -18 by 3.
x^{2}-6x=-73
Divide -219 by 3.
x^{2}-6x+\left(-3\right)^{2}=-73+\left(-3\right)^{2}
Divide -6, the coefficient of the x term, by 2 to get -3. Then add the square of -3 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-6x+9=-73+9
Square -3.
x^{2}-6x+9=-64
Add -73 to 9.
\left(x-3\right)^{2}=-64
Factor x^{2}-6x+9. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-3\right)^{2}}=\sqrt{-64}
Take the square root of both sides of the equation.
x-3=8i x-3=-8i
Simplify.
x=3+8i x=3-8i
Add 3 to both sides of the equation.