Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

3\left(x^{2}-6x+5\right)
Factor out 3.
a+b=-6 ab=1\times 5=5
Consider x^{2}-6x+5. Factor the expression by grouping. First, the expression needs to be rewritten as x^{2}+ax+bx+5. To find a and b, set up a system to be solved.
a=-5 b=-1
Since ab is positive, a and b have the same sign. Since a+b is negative, a and b are both negative. The only such pair is the system solution.
\left(x^{2}-5x\right)+\left(-x+5\right)
Rewrite x^{2}-6x+5 as \left(x^{2}-5x\right)+\left(-x+5\right).
x\left(x-5\right)-\left(x-5\right)
Factor out x in the first and -1 in the second group.
\left(x-5\right)\left(x-1\right)
Factor out common term x-5 by using distributive property.
3\left(x-5\right)\left(x-1\right)
Rewrite the complete factored expression.
3x^{2}-18x+15=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-\left(-18\right)±\sqrt{\left(-18\right)^{2}-4\times 3\times 15}}{2\times 3}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-18\right)±\sqrt{324-4\times 3\times 15}}{2\times 3}
Square -18.
x=\frac{-\left(-18\right)±\sqrt{324-12\times 15}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-18\right)±\sqrt{324-180}}{2\times 3}
Multiply -12 times 15.
x=\frac{-\left(-18\right)±\sqrt{144}}{2\times 3}
Add 324 to -180.
x=\frac{-\left(-18\right)±12}{2\times 3}
Take the square root of 144.
x=\frac{18±12}{2\times 3}
The opposite of -18 is 18.
x=\frac{18±12}{6}
Multiply 2 times 3.
x=\frac{30}{6}
Now solve the equation x=\frac{18±12}{6} when ± is plus. Add 18 to 12.
x=5
Divide 30 by 6.
x=\frac{6}{6}
Now solve the equation x=\frac{18±12}{6} when ± is minus. Subtract 12 from 18.
x=1
Divide 6 by 6.
3x^{2}-18x+15=3\left(x-5\right)\left(x-1\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute 5 for x_{1} and 1 for x_{2}.
x ^ 2 -6x +5 = 0
Quadratic equations such as this one can be solved by a new direct factoring method that does not require guess work. To use the direct factoring method, the equation must be in the form x^2+Bx+C=0.This is achieved by dividing both sides of the equation by 3
r + s = 6 rs = 5
Let r and s be the factors for the quadratic equation such that x^2+Bx+C=(x−r)(x−s) where sum of factors (r+s)=−B and the product of factors rs = C
r = 3 - u s = 3 + u
Two numbers r and s sum up to 6 exactly when the average of the two numbers is \frac{1}{2}*6 = 3. You can also see that the midpoint of r and s corresponds to the axis of symmetry of the parabola represented by the quadratic equation y=x^2+Bx+C. The values of r and s are equidistant from the center by an unknown quantity u. Express r and s with respect to variable u. <div style='padding: 8px'><img src='https://opalmath.azureedge.net/customsolver/quadraticgraph.png' style='width: 100%;max-width: 700px' /></div>
(3 - u) (3 + u) = 5
To solve for unknown quantity u, substitute these in the product equation rs = 5
9 - u^2 = 5
Simplify by expanding (a -b) (a + b) = a^2 – b^2
-u^2 = 5-9 = -4
Simplify the expression by subtracting 9 on both sides
u^2 = 4 u = \pm\sqrt{4} = \pm 2
Simplify the expression by multiplying -1 on both sides and take the square root to obtain the value of unknown variable u
r =3 - 2 = 1 s = 3 + 2 = 5
The factors r and s are the solutions to the quadratic equation. Substitute the value of u to compute the r and s.