Factor
-12\left(x-\left(-\frac{5\sqrt{2145}}{24}+\frac{25}{8}\right)\right)\left(x-\left(\frac{5\sqrt{2145}}{24}+\frac{25}{8}\right)\right)
Evaluate
1000+75x-12x^{2}
Graph
Share
Copied to clipboard
factor(-12x^{2}+75x+1000)
Combine 3x^{2} and -15x^{2} to get -12x^{2}.
-12x^{2}+75x+1000=0
Quadratic polynomial can be factored using the transformation ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), where x_{1} and x_{2} are the solutions of the quadratic equation ax^{2}+bx+c=0.
x=\frac{-75±\sqrt{75^{2}-4\left(-12\right)\times 1000}}{2\left(-12\right)}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-75±\sqrt{5625-4\left(-12\right)\times 1000}}{2\left(-12\right)}
Square 75.
x=\frac{-75±\sqrt{5625+48\times 1000}}{2\left(-12\right)}
Multiply -4 times -12.
x=\frac{-75±\sqrt{5625+48000}}{2\left(-12\right)}
Multiply 48 times 1000.
x=\frac{-75±\sqrt{53625}}{2\left(-12\right)}
Add 5625 to 48000.
x=\frac{-75±5\sqrt{2145}}{2\left(-12\right)}
Take the square root of 53625.
x=\frac{-75±5\sqrt{2145}}{-24}
Multiply 2 times -12.
x=\frac{5\sqrt{2145}-75}{-24}
Now solve the equation x=\frac{-75±5\sqrt{2145}}{-24} when ± is plus. Add -75 to 5\sqrt{2145}.
x=-\frac{5\sqrt{2145}}{24}+\frac{25}{8}
Divide -75+5\sqrt{2145} by -24.
x=\frac{-5\sqrt{2145}-75}{-24}
Now solve the equation x=\frac{-75±5\sqrt{2145}}{-24} when ± is minus. Subtract 5\sqrt{2145} from -75.
x=\frac{5\sqrt{2145}}{24}+\frac{25}{8}
Divide -75-5\sqrt{2145} by -24.
-12x^{2}+75x+1000=-12\left(x-\left(-\frac{5\sqrt{2145}}{24}+\frac{25}{8}\right)\right)\left(x-\left(\frac{5\sqrt{2145}}{24}+\frac{25}{8}\right)\right)
Factor the original expression using ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Substitute \frac{25}{8}-\frac{5\sqrt{2145}}{24} for x_{1} and \frac{25}{8}+\frac{5\sqrt{2145}}{24} for x_{2}.
-12x^{2}+75x+1000
Combine 3x^{2} and -15x^{2} to get -12x^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}