Solve for x
x = \frac{\sqrt{21001} + 149}{3} \approx 97.972405916
x = \frac{149 - \sqrt{21001}}{3} \approx 1.360927417
Graph
Share
Copied to clipboard
3x^{2}-298x+400=0
Multiply 149 and 2 to get 298.
x=\frac{-\left(-298\right)±\sqrt{\left(-298\right)^{2}-4\times 3\times 400}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -298 for b, and 400 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-298\right)±\sqrt{88804-4\times 3\times 400}}{2\times 3}
Square -298.
x=\frac{-\left(-298\right)±\sqrt{88804-12\times 400}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-298\right)±\sqrt{88804-4800}}{2\times 3}
Multiply -12 times 400.
x=\frac{-\left(-298\right)±\sqrt{84004}}{2\times 3}
Add 88804 to -4800.
x=\frac{-\left(-298\right)±2\sqrt{21001}}{2\times 3}
Take the square root of 84004.
x=\frac{298±2\sqrt{21001}}{2\times 3}
The opposite of -298 is 298.
x=\frac{298±2\sqrt{21001}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{21001}+298}{6}
Now solve the equation x=\frac{298±2\sqrt{21001}}{6} when ± is plus. Add 298 to 2\sqrt{21001}.
x=\frac{\sqrt{21001}+149}{3}
Divide 298+2\sqrt{21001} by 6.
x=\frac{298-2\sqrt{21001}}{6}
Now solve the equation x=\frac{298±2\sqrt{21001}}{6} when ± is minus. Subtract 2\sqrt{21001} from 298.
x=\frac{149-\sqrt{21001}}{3}
Divide 298-2\sqrt{21001} by 6.
x=\frac{\sqrt{21001}+149}{3} x=\frac{149-\sqrt{21001}}{3}
The equation is now solved.
3x^{2}-298x+400=0
Multiply 149 and 2 to get 298.
3x^{2}-298x=-400
Subtract 400 from both sides. Anything subtracted from zero gives its negation.
\frac{3x^{2}-298x}{3}=-\frac{400}{3}
Divide both sides by 3.
x^{2}-\frac{298}{3}x=-\frac{400}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{298}{3}x+\left(-\frac{149}{3}\right)^{2}=-\frac{400}{3}+\left(-\frac{149}{3}\right)^{2}
Divide -\frac{298}{3}, the coefficient of the x term, by 2 to get -\frac{149}{3}. Then add the square of -\frac{149}{3} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{298}{3}x+\frac{22201}{9}=-\frac{400}{3}+\frac{22201}{9}
Square -\frac{149}{3} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{298}{3}x+\frac{22201}{9}=\frac{21001}{9}
Add -\frac{400}{3} to \frac{22201}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{149}{3}\right)^{2}=\frac{21001}{9}
Factor x^{2}-\frac{298}{3}x+\frac{22201}{9}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{149}{3}\right)^{2}}=\sqrt{\frac{21001}{9}}
Take the square root of both sides of the equation.
x-\frac{149}{3}=\frac{\sqrt{21001}}{3} x-\frac{149}{3}=-\frac{\sqrt{21001}}{3}
Simplify.
x=\frac{\sqrt{21001}+149}{3} x=\frac{149-\sqrt{21001}}{3}
Add \frac{149}{3} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}