Solve for x
x=\frac{\sqrt{35}}{3}+2\approx 3.972026594
x=-\frac{\sqrt{35}}{3}+2\approx 0.027973406
Graph
Share
Copied to clipboard
3x^{2}-12x+\frac{1}{3}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 3\times \frac{1}{3}}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -12 for b, and \frac{1}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 3\times \frac{1}{3}}}{2\times 3}
Square -12.
x=\frac{-\left(-12\right)±\sqrt{144-12\times \frac{1}{3}}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-12\right)±\sqrt{144-4}}{2\times 3}
Multiply -12 times \frac{1}{3}.
x=\frac{-\left(-12\right)±\sqrt{140}}{2\times 3}
Add 144 to -4.
x=\frac{-\left(-12\right)±2\sqrt{35}}{2\times 3}
Take the square root of 140.
x=\frac{12±2\sqrt{35}}{2\times 3}
The opposite of -12 is 12.
x=\frac{12±2\sqrt{35}}{6}
Multiply 2 times 3.
x=\frac{2\sqrt{35}+12}{6}
Now solve the equation x=\frac{12±2\sqrt{35}}{6} when ± is plus. Add 12 to 2\sqrt{35}.
x=\frac{\sqrt{35}}{3}+2
Divide 12+2\sqrt{35} by 6.
x=\frac{12-2\sqrt{35}}{6}
Now solve the equation x=\frac{12±2\sqrt{35}}{6} when ± is minus. Subtract 2\sqrt{35} from 12.
x=-\frac{\sqrt{35}}{3}+2
Divide 12-2\sqrt{35} by 6.
x=\frac{\sqrt{35}}{3}+2 x=-\frac{\sqrt{35}}{3}+2
The equation is now solved.
3x^{2}-12x+\frac{1}{3}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}-12x+\frac{1}{3}-\frac{1}{3}=-\frac{1}{3}
Subtract \frac{1}{3} from both sides of the equation.
3x^{2}-12x=-\frac{1}{3}
Subtracting \frac{1}{3} from itself leaves 0.
\frac{3x^{2}-12x}{3}=-\frac{\frac{1}{3}}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{12}{3}\right)x=-\frac{\frac{1}{3}}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-4x=-\frac{\frac{1}{3}}{3}
Divide -12 by 3.
x^{2}-4x=-\frac{1}{9}
Divide -\frac{1}{3} by 3.
x^{2}-4x+\left(-2\right)^{2}=-\frac{1}{9}+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=-\frac{1}{9}+4
Square -2.
x^{2}-4x+4=\frac{35}{9}
Add -\frac{1}{9} to 4.
\left(x-2\right)^{2}=\frac{35}{9}
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{\frac{35}{9}}
Take the square root of both sides of the equation.
x-2=\frac{\sqrt{35}}{3} x-2=-\frac{\sqrt{35}}{3}
Simplify.
x=\frac{\sqrt{35}}{3}+2 x=-\frac{\sqrt{35}}{3}+2
Add 2 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}