Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-6x=0
Subtract 6x from both sides.
x\left(3x-6\right)=0
Factor out x.
x=0 x=2
To find equation solutions, solve x=0 and 3x-6=0.
3x^{2}-6x=0
Subtract 6x from both sides.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -6 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±6}{2\times 3}
Take the square root of \left(-6\right)^{2}.
x=\frac{6±6}{2\times 3}
The opposite of -6 is 6.
x=\frac{6±6}{6}
Multiply 2 times 3.
x=\frac{12}{6}
Now solve the equation x=\frac{6±6}{6} when ± is plus. Add 6 to 6.
x=2
Divide 12 by 6.
x=\frac{0}{6}
Now solve the equation x=\frac{6±6}{6} when ± is minus. Subtract 6 from 6.
x=0
Divide 0 by 6.
x=2 x=0
The equation is now solved.
3x^{2}-6x=0
Subtract 6x from both sides.
\frac{3x^{2}-6x}{3}=\frac{0}{3}
Divide both sides by 3.
x^{2}+\left(-\frac{6}{3}\right)x=\frac{0}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-2x=\frac{0}{3}
Divide -6 by 3.
x^{2}-2x=0
Divide 0 by 3.
x^{2}-2x+1=1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
\left(x-1\right)^{2}=1
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{1}
Take the square root of both sides of the equation.
x-1=1 x-1=-1
Simplify.
x=2 x=0
Add 1 to both sides of the equation.