Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}-19x=14
Subtract 19x from both sides.
3x^{2}-19x-14=0
Subtract 14 from both sides.
a+b=-19 ab=3\left(-14\right)=-42
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-14. To find a and b, set up a system to be solved.
1,-42 2,-21 3,-14 6,-7
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -42.
1-42=-41 2-21=-19 3-14=-11 6-7=-1
Calculate the sum for each pair.
a=-21 b=2
The solution is the pair that gives sum -19.
\left(3x^{2}-21x\right)+\left(2x-14\right)
Rewrite 3x^{2}-19x-14 as \left(3x^{2}-21x\right)+\left(2x-14\right).
3x\left(x-7\right)+2\left(x-7\right)
Factor out 3x in the first and 2 in the second group.
\left(x-7\right)\left(3x+2\right)
Factor out common term x-7 by using distributive property.
x=7 x=-\frac{2}{3}
To find equation solutions, solve x-7=0 and 3x+2=0.
3x^{2}-19x=14
Subtract 19x from both sides.
3x^{2}-19x-14=0
Subtract 14 from both sides.
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 3\left(-14\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -19 for b, and -14 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-19\right)±\sqrt{361-4\times 3\left(-14\right)}}{2\times 3}
Square -19.
x=\frac{-\left(-19\right)±\sqrt{361-12\left(-14\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-19\right)±\sqrt{361+168}}{2\times 3}
Multiply -12 times -14.
x=\frac{-\left(-19\right)±\sqrt{529}}{2\times 3}
Add 361 to 168.
x=\frac{-\left(-19\right)±23}{2\times 3}
Take the square root of 529.
x=\frac{19±23}{2\times 3}
The opposite of -19 is 19.
x=\frac{19±23}{6}
Multiply 2 times 3.
x=\frac{42}{6}
Now solve the equation x=\frac{19±23}{6} when ± is plus. Add 19 to 23.
x=7
Divide 42 by 6.
x=-\frac{4}{6}
Now solve the equation x=\frac{19±23}{6} when ± is minus. Subtract 23 from 19.
x=-\frac{2}{3}
Reduce the fraction \frac{-4}{6} to lowest terms by extracting and canceling out 2.
x=7 x=-\frac{2}{3}
The equation is now solved.
3x^{2}-19x=14
Subtract 19x from both sides.
\frac{3x^{2}-19x}{3}=\frac{14}{3}
Divide both sides by 3.
x^{2}-\frac{19}{3}x=\frac{14}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{19}{3}x+\left(-\frac{19}{6}\right)^{2}=\frac{14}{3}+\left(-\frac{19}{6}\right)^{2}
Divide -\frac{19}{3}, the coefficient of the x term, by 2 to get -\frac{19}{6}. Then add the square of -\frac{19}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{19}{3}x+\frac{361}{36}=\frac{14}{3}+\frac{361}{36}
Square -\frac{19}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{19}{3}x+\frac{361}{36}=\frac{529}{36}
Add \frac{14}{3} to \frac{361}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{19}{6}\right)^{2}=\frac{529}{36}
Factor x^{2}-\frac{19}{3}x+\frac{361}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{19}{6}\right)^{2}}=\sqrt{\frac{529}{36}}
Take the square root of both sides of the equation.
x-\frac{19}{6}=\frac{23}{6} x-\frac{19}{6}=-\frac{23}{6}
Simplify.
x=7 x=-\frac{2}{3}
Add \frac{19}{6} to both sides of the equation.