Skip to main content
Solve for x
Tick mark Image
Graph

Share

3x^{2}-11x=4
Subtract 11x from both sides.
3x^{2}-11x-4=0
Subtract 4 from both sides.
a+b=-11 ab=3\left(-4\right)=-12
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as 3x^{2}+ax+bx-4. To find a and b, set up a system to be solved.
1,-12 2,-6 3,-4
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -12.
1-12=-11 2-6=-4 3-4=-1
Calculate the sum for each pair.
a=-12 b=1
The solution is the pair that gives sum -11.
\left(3x^{2}-12x\right)+\left(x-4\right)
Rewrite 3x^{2}-11x-4 as \left(3x^{2}-12x\right)+\left(x-4\right).
3x\left(x-4\right)+x-4
Factor out 3x in 3x^{2}-12x.
\left(x-4\right)\left(3x+1\right)
Factor out common term x-4 by using distributive property.
x=4 x=-\frac{1}{3}
To find equation solutions, solve x-4=0 and 3x+1=0.
3x^{2}-11x=4
Subtract 11x from both sides.
3x^{2}-11x-4=0
Subtract 4 from both sides.
x=\frac{-\left(-11\right)±\sqrt{\left(-11\right)^{2}-4\times 3\left(-4\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, -11 for b, and -4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-11\right)±\sqrt{121-4\times 3\left(-4\right)}}{2\times 3}
Square -11.
x=\frac{-\left(-11\right)±\sqrt{121-12\left(-4\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-\left(-11\right)±\sqrt{121+48}}{2\times 3}
Multiply -12 times -4.
x=\frac{-\left(-11\right)±\sqrt{169}}{2\times 3}
Add 121 to 48.
x=\frac{-\left(-11\right)±13}{2\times 3}
Take the square root of 169.
x=\frac{11±13}{2\times 3}
The opposite of -11 is 11.
x=\frac{11±13}{6}
Multiply 2 times 3.
x=\frac{24}{6}
Now solve the equation x=\frac{11±13}{6} when ± is plus. Add 11 to 13.
x=4
Divide 24 by 6.
x=-\frac{2}{6}
Now solve the equation x=\frac{11±13}{6} when ± is minus. Subtract 13 from 11.
x=-\frac{1}{3}
Reduce the fraction \frac{-2}{6} to lowest terms by extracting and canceling out 2.
x=4 x=-\frac{1}{3}
The equation is now solved.
3x^{2}-11x=4
Subtract 11x from both sides.
\frac{3x^{2}-11x}{3}=\frac{4}{3}
Divide both sides by 3.
x^{2}-\frac{11}{3}x=\frac{4}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}-\frac{11}{3}x+\left(-\frac{11}{6}\right)^{2}=\frac{4}{3}+\left(-\frac{11}{6}\right)^{2}
Divide -\frac{11}{3}, the coefficient of the x term, by 2 to get -\frac{11}{6}. Then add the square of -\frac{11}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{11}{3}x+\frac{121}{36}=\frac{4}{3}+\frac{121}{36}
Square -\frac{11}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{11}{3}x+\frac{121}{36}=\frac{169}{36}
Add \frac{4}{3} to \frac{121}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{11}{6}\right)^{2}=\frac{169}{36}
Factor x^{2}-\frac{11}{3}x+\frac{121}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{11}{6}\right)^{2}}=\sqrt{\frac{169}{36}}
Take the square root of both sides of the equation.
x-\frac{11}{6}=\frac{13}{6} x-\frac{11}{6}=-\frac{13}{6}
Simplify.
x=4 x=-\frac{1}{3}
Add \frac{11}{6} to both sides of the equation.