Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+9x=2
Add 9x to both sides.
3x^{2}+9x-2=0
Subtract 2 from both sides.
x=\frac{-9±\sqrt{9^{2}-4\times 3\left(-2\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 9 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\times 3\left(-2\right)}}{2\times 3}
Square 9.
x=\frac{-9±\sqrt{81-12\left(-2\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-9±\sqrt{81+24}}{2\times 3}
Multiply -12 times -2.
x=\frac{-9±\sqrt{105}}{2\times 3}
Add 81 to 24.
x=\frac{-9±\sqrt{105}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{105}-9}{6}
Now solve the equation x=\frac{-9±\sqrt{105}}{6} when ± is plus. Add -9 to \sqrt{105}.
x=\frac{\sqrt{105}}{6}-\frac{3}{2}
Divide -9+\sqrt{105} by 6.
x=\frac{-\sqrt{105}-9}{6}
Now solve the equation x=\frac{-9±\sqrt{105}}{6} when ± is minus. Subtract \sqrt{105} from -9.
x=-\frac{\sqrt{105}}{6}-\frac{3}{2}
Divide -9-\sqrt{105} by 6.
x=\frac{\sqrt{105}}{6}-\frac{3}{2} x=-\frac{\sqrt{105}}{6}-\frac{3}{2}
The equation is now solved.
3x^{2}+9x=2
Add 9x to both sides.
\frac{3x^{2}+9x}{3}=\frac{2}{3}
Divide both sides by 3.
x^{2}+\frac{9}{3}x=\frac{2}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+3x=\frac{2}{3}
Divide 9 by 3.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\frac{2}{3}+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=\frac{2}{3}+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{35}{12}
Add \frac{2}{3} to \frac{9}{4} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{2}\right)^{2}=\frac{35}{12}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{35}{12}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{\sqrt{105}}{6} x+\frac{3}{2}=-\frac{\sqrt{105}}{6}
Simplify.
x=\frac{\sqrt{105}}{6}-\frac{3}{2} x=-\frac{\sqrt{105}}{6}-\frac{3}{2}
Subtract \frac{3}{2} from both sides of the equation.