Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+6x=1
Add 6x to both sides.
3x^{2}+6x-1=0
Subtract 1 from both sides.
x=\frac{-6±\sqrt{6^{2}-4\times 3\left(-1\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 6 for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-6±\sqrt{36-4\times 3\left(-1\right)}}{2\times 3}
Square 6.
x=\frac{-6±\sqrt{36-12\left(-1\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-6±\sqrt{36+12}}{2\times 3}
Multiply -12 times -1.
x=\frac{-6±\sqrt{48}}{2\times 3}
Add 36 to 12.
x=\frac{-6±4\sqrt{3}}{2\times 3}
Take the square root of 48.
x=\frac{-6±4\sqrt{3}}{6}
Multiply 2 times 3.
x=\frac{4\sqrt{3}-6}{6}
Now solve the equation x=\frac{-6±4\sqrt{3}}{6} when ± is plus. Add -6 to 4\sqrt{3}.
x=\frac{2\sqrt{3}}{3}-1
Divide -6+4\sqrt{3} by 6.
x=\frac{-4\sqrt{3}-6}{6}
Now solve the equation x=\frac{-6±4\sqrt{3}}{6} when ± is minus. Subtract 4\sqrt{3} from -6.
x=-\frac{2\sqrt{3}}{3}-1
Divide -6-4\sqrt{3} by 6.
x=\frac{2\sqrt{3}}{3}-1 x=-\frac{2\sqrt{3}}{3}-1
The equation is now solved.
3x^{2}+6x=1
Add 6x to both sides.
\frac{3x^{2}+6x}{3}=\frac{1}{3}
Divide both sides by 3.
x^{2}+\frac{6}{3}x=\frac{1}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+2x=\frac{1}{3}
Divide 6 by 3.
x^{2}+2x+1^{2}=\frac{1}{3}+1^{2}
Divide 2, the coefficient of the x term, by 2 to get 1. Then add the square of 1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+2x+1=\frac{1}{3}+1
Square 1.
x^{2}+2x+1=\frac{4}{3}
Add \frac{1}{3} to 1.
\left(x+1\right)^{2}=\frac{4}{3}
Factor x^{2}+2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{\frac{4}{3}}
Take the square root of both sides of the equation.
x+1=\frac{2\sqrt{3}}{3} x+1=-\frac{2\sqrt{3}}{3}
Simplify.
x=\frac{2\sqrt{3}}{3}-1 x=-\frac{2\sqrt{3}}{3}-1
Subtract 1 from both sides of the equation.