Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

3x^{2}+x-\frac{1}{3}=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-1±\sqrt{1^{2}-4\times 3\left(-\frac{1}{3}\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 1 for b, and -\frac{1}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 3\left(-\frac{1}{3}\right)}}{2\times 3}
Square 1.
x=\frac{-1±\sqrt{1-12\left(-\frac{1}{3}\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-1±\sqrt{1+4}}{2\times 3}
Multiply -12 times -\frac{1}{3}.
x=\frac{-1±\sqrt{5}}{2\times 3}
Add 1 to 4.
x=\frac{-1±\sqrt{5}}{6}
Multiply 2 times 3.
x=\frac{\sqrt{5}-1}{6}
Now solve the equation x=\frac{-1±\sqrt{5}}{6} when ± is plus. Add -1 to \sqrt{5}.
x=\frac{-\sqrt{5}-1}{6}
Now solve the equation x=\frac{-1±\sqrt{5}}{6} when ± is minus. Subtract \sqrt{5} from -1.
x=\frac{\sqrt{5}-1}{6} x=\frac{-\sqrt{5}-1}{6}
The equation is now solved.
3x^{2}+x-\frac{1}{3}=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}+x-\frac{1}{3}-\left(-\frac{1}{3}\right)=-\left(-\frac{1}{3}\right)
Add \frac{1}{3} to both sides of the equation.
3x^{2}+x=-\left(-\frac{1}{3}\right)
Subtracting -\frac{1}{3} from itself leaves 0.
3x^{2}+x=\frac{1}{3}
Subtract -\frac{1}{3} from 0.
\frac{3x^{2}+x}{3}=\frac{\frac{1}{3}}{3}
Divide both sides by 3.
x^{2}+\frac{1}{3}x=\frac{\frac{1}{3}}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+\frac{1}{3}x=\frac{1}{9}
Divide \frac{1}{3} by 3.
x^{2}+\frac{1}{3}x+\left(\frac{1}{6}\right)^{2}=\frac{1}{9}+\left(\frac{1}{6}\right)^{2}
Divide \frac{1}{3}, the coefficient of the x term, by 2 to get \frac{1}{6}. Then add the square of \frac{1}{6} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{1}{9}+\frac{1}{36}
Square \frac{1}{6} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{1}{3}x+\frac{1}{36}=\frac{5}{36}
Add \frac{1}{9} to \frac{1}{36} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{1}{6}\right)^{2}=\frac{5}{36}
Factor x^{2}+\frac{1}{3}x+\frac{1}{36}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{6}\right)^{2}}=\sqrt{\frac{5}{36}}
Take the square root of both sides of the equation.
x+\frac{1}{6}=\frac{\sqrt{5}}{6} x+\frac{1}{6}=-\frac{\sqrt{5}}{6}
Simplify.
x=\frac{\sqrt{5}-1}{6} x=\frac{-\sqrt{5}-1}{6}
Subtract \frac{1}{6} from both sides of the equation.