Solve for x
x=-7
x=4
Graph
Share
Copied to clipboard
3x^{2}+9x+6-90=0
Subtract 90 from both sides.
3x^{2}+9x-84=0
Subtract 90 from 6 to get -84.
x^{2}+3x-28=0
Divide both sides by 3.
a+b=3 ab=1\left(-28\right)=-28
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as x^{2}+ax+bx-28. To find a and b, set up a system to be solved.
-1,28 -2,14 -4,7
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -28.
-1+28=27 -2+14=12 -4+7=3
Calculate the sum for each pair.
a=-4 b=7
The solution is the pair that gives sum 3.
\left(x^{2}-4x\right)+\left(7x-28\right)
Rewrite x^{2}+3x-28 as \left(x^{2}-4x\right)+\left(7x-28\right).
x\left(x-4\right)+7\left(x-4\right)
Factor out x in the first and 7 in the second group.
\left(x-4\right)\left(x+7\right)
Factor out common term x-4 by using distributive property.
x=4 x=-7
To find equation solutions, solve x-4=0 and x+7=0.
3x^{2}+9x+6=90
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
3x^{2}+9x+6-90=90-90
Subtract 90 from both sides of the equation.
3x^{2}+9x+6-90=0
Subtracting 90 from itself leaves 0.
3x^{2}+9x-84=0
Subtract 90 from 6.
x=\frac{-9±\sqrt{9^{2}-4\times 3\left(-84\right)}}{2\times 3}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 3 for a, 9 for b, and -84 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-9±\sqrt{81-4\times 3\left(-84\right)}}{2\times 3}
Square 9.
x=\frac{-9±\sqrt{81-12\left(-84\right)}}{2\times 3}
Multiply -4 times 3.
x=\frac{-9±\sqrt{81+1008}}{2\times 3}
Multiply -12 times -84.
x=\frac{-9±\sqrt{1089}}{2\times 3}
Add 81 to 1008.
x=\frac{-9±33}{2\times 3}
Take the square root of 1089.
x=\frac{-9±33}{6}
Multiply 2 times 3.
x=\frac{24}{6}
Now solve the equation x=\frac{-9±33}{6} when ± is plus. Add -9 to 33.
x=4
Divide 24 by 6.
x=-\frac{42}{6}
Now solve the equation x=\frac{-9±33}{6} when ± is minus. Subtract 33 from -9.
x=-7
Divide -42 by 6.
x=4 x=-7
The equation is now solved.
3x^{2}+9x+6=90
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
3x^{2}+9x+6-6=90-6
Subtract 6 from both sides of the equation.
3x^{2}+9x=90-6
Subtracting 6 from itself leaves 0.
3x^{2}+9x=84
Subtract 6 from 90.
\frac{3x^{2}+9x}{3}=\frac{84}{3}
Divide both sides by 3.
x^{2}+\frac{9}{3}x=\frac{84}{3}
Dividing by 3 undoes the multiplication by 3.
x^{2}+3x=\frac{84}{3}
Divide 9 by 3.
x^{2}+3x=28
Divide 84 by 3.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=28+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+3x+\frac{9}{4}=28+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
x^{2}+3x+\frac{9}{4}=\frac{121}{4}
Add 28 to \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{121}{4}
Factor x^{2}+3x+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{121}{4}}
Take the square root of both sides of the equation.
x+\frac{3}{2}=\frac{11}{2} x+\frac{3}{2}=-\frac{11}{2}
Simplify.
x=4 x=-7
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}